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Overview
All the components in the real world have a systematic and/or a stochastic error. In the
following we will describe the errors and the error functions.

Drive Control
The error occurs while moving because of the physical properties of the ground. The
simulator moves the koala agent not continuously but discretly at a given frequency. So every
time the location changes the error applies. The error has an influence on the position and on
the orientation of the koala. The error is a Gaussian function, so the formula is:

Ln+1 = Ln+[∆xn+1 , ∆yn+1] (1)
αn+1 = αn+arctan(∆yn+1 / ∆xn+1) (2)

∆xn+1 = ∆xn *( 1 ±  random()*σDrive ) (3)
∆yn+1 = ∆yn *( 1 ±  random()*σDrive ) (4)

L = the location of the koala
α = the orientation of the koala
∆x = the distance to move on the abscissa
∆y = the distance to move on the ordinate
σDrive = the error rate

Of course, this error has a major impact on the path integration.
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Cameras
The cameras have multiple errors.

- Perception error = the landmark may not be seen.
- Recognition error = the landmark is recognized wrong.
- Position error

o Distance error = the distance to the landmark is calculated wrong.
o Angular error = the angle under which the landmark was perceived is

erroneous.

Perception error
The perception error depends on the angle at which a landmark is perceived.

Figure 1: perception process (schematic)

It is a Boolean error rate. The result is just perceived or not perceived.
The formula to calculate the error probability is:

perr = 4 α
α max







2

+ σ perc

(5)

α = the angle under which the landmark is perceived
αmax = the maximal angle under which the landmark can be seen
σperc = the error rate at 0 degrees. This can be read as the chance to miss the landmark at 0°.

The following chart shows the error function for a typical landmark with αmax= 120° and
σperc= 0.01.
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Perception error (p=0.01)
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Figure 2: Perception error for p=0.01

The next chart shows multiple angles with σperc= 0.01. It shows that a view angle of 360° does
not mean, that the landmark can be perceived equal well from all sides. The landmark still has
an orientation. A landmark, which can be perceived from all sides equally well does not have
such an error distribution, because it does not depend on the angle it is perceived. Actually
such a landmark consists of infinitely many landmarks, one at each possible orientation.
We therefore need to circumvent the error function. This can easily be done by setting αmax to
a very high number. In the example we used 10000° which results in an equally distributed
error rate.
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Perception error (p=0.1)
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Figure 3: Perception error for p=0.1

But the perceived error depends also on the distance to the landmark. The further away the
landmark, the smaller it is, and the bigger is the perception error. So we need a function that
grows with increasing distance and reaches its maximum (1) at the maximum sight distance
dmax.
On the other hand, when the landmark is too close, it cannot be perceived as well. We will
approximate the error, when the landmark is too close, by applying a minimum sight distance
dmin.

The chosen formula is exponential at base 2.

p = 2 d − dmax( ) (6)

d = distance to the landmark
dmax = maximum sight distance
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Distance error
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Figure 4: Distance errors for different bases

Because we calculate the distance with the theorem of Pythagoras we get the squared
distance. To prevent a time-consuming square root calculation, we could approximate the
original formula by the following:

p = 2

d2 − dmax
2( )

2dmax













(7)

d = distance to the landmark
dmax = maximum sight distance

The approximation works pretty well.
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Distance error
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Figure 5: Approximated distance errors  for different bases

The final perception error rate is therefore a combination of these two functions and depends
on the distance and the angle at which a landmark is perceived. The final formula is:

perr = 4 α
α max







2

+ σ perc + 2 d − dmax( ) (8)

As one can see, this formula has three dimensions:
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Figure 6: Perception error function ( x=perceived distance, y=perceived angle, z=perception error)

Recognition error
The recognition error again depends on the perception angle and the distance. So we get the
same distribution. The difference is that when a landmark was not correctly recognized it
returns a wrong landmark id. The probability that a random landmark Li will be returned is:

pLi =
1
n

 (9)

n = the amount of landmarks in the world
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Positional error

Distance error
The stereoscopic sight of the koala is not very good, so distance estimation is only accurate
for near landmarks.

dest = dreal + random()*∆far + random()*∆near (10)

∆ far = σ distdmid 2
dreal − dmid( )

2










(11)
∆near = −σ distdreal (12)

dmid = the medium sight distance. At this distance, the error is ±  σdist
dreal = the real distance
dest = the estimated distance

This error distribution has the effect that the estimated mean distance is close to the real
distance for near landmarks.

Distance estimation error
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Figure 7: Distance error ( short distances)

For far distances the estimated mean distance is highly erroneous.
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Distance estimation error
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Figure 8: Distance error (long distances)

Angular error
This again is a Gaussian error. We have got two cameras and both have such an error. For the
simulator though, we approximate it with one single camera positioned between the two
others. The approximation works fine and we cut the computational effort half. The koala also
reports just one angle to the sensory cortex.
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Figure 9: Angular error (schematic)

So we are interested in α only. The calculation is fairly simple:

α =
α L + βL + α R + βR

2
(13)

α = perceived angle relative to the koala
αL/R = orientation of the camera relative to the koala
βL/R = perceived angle relative to the camera

Of course every angle would have a separate and independent Gaussian error. But again, we
approximate them with one single error.

αest = α*(1± random()*σang) (14)

α = perceived angle relative to the koala
αest = the estimated perception angle relative to the koala
σang = the angular error of the camera module
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Gyroscope
The error of the gyroscope is assumed to be a Gaussian error integrated over time.

αn+1 = αn + (1 ± random()*σGyroscope)*∆∝t (15)

α = the estimated angle of the gyroscope
σGyroscope = the error of the  gyroscope
∆∝t = the relative rotation the koala did at time t

Magnetic compass
The error of the magnetic compass is somehow special. The error results from interferences
from magnetic fields. The power of a magnetic field vanishes inverse proportional to the
squared distance.

F =
ξ

dMK
2 LM − LK( ) (16)

ξ = power of the field in the center
dMK = the distance between the center of the magnetic field and the koala
LM = the location of the center of the magnetic field
LK = the location of the koala

So if we have n magnetic fields that interfere, we get a resulting force vector with this
formula:

Ftot = Σ(Fi) (17)

= Σ
ξi

dMKi

2 LMi − LK( )












(18)

Note: The influence of the north pole is just one of these force vectors, lets assume F0.


