
Eukalyptus
(Koala Environment Simulator)

The cortex – a first approach

Thabo Beeler, University of Applied Sciences, Rapperswil (HSR)

The cortex – a first approach 2

Revision History
Version When What Who
0.1 05.06.2004 Initial version Thabo Beeler

The cortex – a first approach 3

Table of contents
Introduction... 4
General notations .. 4

Space... 4
Location .. 4
Position ... 4

Map building... 5
Mental map ... 5
Landmarks .. 5
S-Neuron... 5

Inactivity ... 6
Inactivity function ... 6

State determination.. 7
Dynamic linkage ... 7
Dynamic creation of neurons ... 7
The state network .. 7

Error Correction .. 9
L-Neuron... 10

Landmark oblivion .. 10
Landmark recognition error ... 11
Uncertainties ... 13
Koala position estimation .. 15

K-Neuron .. 16
Goal-directed navigation ... 18
Path finding... 18

Dynamic environment ... 18
Local oblivion ... 18
Global oblivion.. 19
Combined oblivion .. 19

Obstacles... 19

The cortex – a first approach 4

Introduction
This document is the collection of some ideas considering map building and path finding.

General notations
Space
At the moment, the Koala moves in a 2-Dimensional space. For the mental map, we will add
the orientation of the Koala as the third dimension.

Location
The location of the Koala is always in this 3-Dimensional space. It is called L

uv
 and looks like

this:

L
uv

=
x
y
kα

 , here k is a constant factor to fit the orientation to the Cartesian position of the

Koala.

Position
Sometimes we don’t care about the orientation. Then we talk about the position of an object.

The position is therefore the 2-Dimensional vector

P
uv

=
x
y

.

The cortex – a first approach 5

Map building
The map building approach consists of multiple parts. The complete solution should be able
to

- cartograph a 2-Dimensional space
- perform error correction

Mental map
First, we will look at the cartography task only. So we assume the world to be perfect, which,
of course, it is not.
The Koala should be able to build a mental map, which in turn should serve as the base for the
path finding task as well as for the goal directed navigation.
As the Koala does not know how big the space to explore is, the mental map should be
created dynamically.

Landmarks
Landmarks are perceived at a given point in time for some period of time. As the Koala has
not a 360 ° view field, it will loose sight of a landmark, even if it is still in reach. E.g. when
scanning for new landmarks.
So we need to remember the landmarks and to forget them while we move along. We will call
this the landmark oblivion function.
We will return to this function in the context of the landmark neurons. For the moment, just
assume that we receive a value in the range [0,1], where 1 means the Koala just now
perceives the landmark, and 0 means the Koala did completely forget about the landmark.
These values will be called landmark powers. They are represented as an N-Dimensional
vector, where N is the amount of landmarks perceived so far: LM

u vuu
= LM1, LM 2 ,..., LM N[]

S-Neuron
The mental map consists only of so called state neurons. They separate the 3-Dimensional
space into N slices, where N is the amount of neurons in the net.
A state neuron can schematically be drawn like this:

Figure 1: S-Neuron schematic

The cortex – a first approach 6

When a state neuron is created it sets the weights of the links to the current state. This means,
the weights of the links from the landmark neurons are set to the corresponding landmark
powers and the weights of the links from the location of the Koala to the current location. We
will call these weight vectors LMw

u vuuuu
 and Lw

u vu
, respectively.

At any point in time, the S-Neuron receives as input the current landmark powers LM
u vuu

as well
as the current location L

uv
 of the Koala.

The output is the inactivity ξ, which is calculated by the inactivity function.

In addition to the landmark and location links, the S-Neurons are connected to some of the
other S-Neurons as well. This linkage is dynamic. We will describe the process later in detail.
The following figure of the S-Neuron contains these links, labeled N1,..,Nn.

Figure 2: S-Neuron

Inactivity
Every neuron in the mental map has inactivity, which is the result of the inactivity function.
The higher the inactivity is, the less the neuron claims to be representative for the current
state. An inactivity of 0 is the minimal inactivity, which in turn means the neuron is maximal
active. The range of the inactivity is [0,+∞);

Inactivity function
The inactivity of a S-Neuron is calculated as follows:

ξ = LMi − LMwi
i =1

N

∑ + τ Li − Lwi
i =1

3

∑
ξ = inactivity

τ = location weighting factor

N = amount of landmarks

(1)

Alternatively, we could also use the following formula. Note, that the threshold must be
adapted, too.

ξ ' = LMi − LMwi()2

i =1

N

∑ + τ Li − Lwi()2

i =1

3

∑ (2)

The cortex – a first approach 7

State determination
The network selects the neuron with the lowest inactivity to determine the actual state. This
neuron is called the active S-Neuron. There can only be one active S-Neuron at a time, so we
have a ‚winner takes all’ network.

Dynamic linkage
S-Neurons are linked to each other. These links are important for the path finding task. The
links are created whenever the active S-Neuron changes. Then a link is established between
the former active S-Neuron and the newly active S-Neuron, when no link existed.
Links are always bidirectional.

An advanced version of the dynamic linkage is to use weighted links. Instead of just
connecting two neurons, they will be connected with a specific strength. Whenever the active
neuron changes, a link is established with weight w0 when no link existed. Otherwise the
weight will be increased according to some function. This sticks the neurons together.
What this can be useful for is described in the path finding chapter.

Dynamic creation of neurons
The network is able to dynamically create neurons. When the inactivity of the active S-
Neuron is higher than a given threshold θ, the network will create a new S-Neuron. Dynamic
linking applies as described above.

The state network
Such a state network is able to cartograph any space (easy to expand to 3D) as follows:

- It will create many neurons where it perceives many landmarks, because we can
distinguish many different states.

- It will create some neurons when the Koala is moving blindly.

When setting τ to 0 it will create neurons only when perceiving landmarks. Nevertheless, it
makes sense to create neurons in the ‚empty’ space as well. We will see why in the chapter
‚Path finding’.

Thanks to the interlinkage of the S-Neurons, this network is very well suited for path finding
and goal directed navigation. See the according chapters.

The cortex – a first approach 8

Figure 3: State network example

The cortex – a first approach 9

Error Correction
As I mentioned before, the state Network performs very well in a perfect environment. Of
course, we don’t have a perfect environment.
Even when we omit events like people disturbing the Koala or changing the environment, we
find many errors. A detailed listing of the identified errors can be found in the document
„Error specification“.
Error correction is a complicated and sensitive task, so we need to expand the state network
with two new concepts:

- The L-Neuron (landmark neuron)
- The K-Neuron (Koala neuron)

Together with the state network, the final network looks like this:

Figure 4: Fully meshed cortex (L = L-Neuron, K = K-Neuron, S = S-Neuron)

In Figure 4 every L-Neuron is connected to every S-Neuron. This fully meshed network
contains amount L-Neurons multiplied by the amount of S-Neurons links. The amount of
links scales poorly because it is exponential.

This can be optimized. Instead of connecting every L-Neuron to every S-Neuron, we just
connect the L-Neurons, that have a power > 0 when the S-Neuron is created. The amount of
links drops to a fraction of the fully meshed network, but the network could act erroneous.
This is so, because it is more likely that a S-Neuron with just a few links will become the
active neuron.
To avoid this error, we need to connect every S-Neuron to a neuron, which sums all landmark
powers. The result of such a partially meshed network is exactly the same as with the fully
meshed network. The advantage is, that when operating with many L-Neurons and S-
Neurons, the amount of links and therefore the computational effort will be massively lower.

The cortex – a first approach 10

Another advantage is, that we do not need to change the S-Neurons at all.

Figure 5: Partially meshed cortex (L = L-Neuron, K = K-Neuron, S = S-Neuron, Σ = sums all landmark powers)

L-Neuron
The L-Neuron is responsible for everything related to landmarks. That is pretty much and it is
unlikely to be done by one single neuron. So instead of L-Neuron we might call it an L-
Network. The cortex creates one L-Neuron per landmark. Its main tasks are

- Landmark oblivion
- Landmark recognition error avoidance
- Landmark position estimation / error avoidance
- Landmark destination estimation / error avoidance
- Koala location correction

The L-Neuron receives a binary input. The values are just ‚seen’ or ‚not seen’, or
mathematically {0,1}.

Landmark oblivion
As the Koala proceeds in space, it wont be able to see a landmark all the time, even if the
landmark could be seen theoretically. To prevent the Koala from forgetting a landmark
instantly, we need to apply an oblivion function. Ideally, the oblivion should not occur over
time, but over the distance the Koala moved. For simplicity, we will take a time based
oblivion function, but this is a subject of enhancement!

The currently used formula is:

The cortex – a first approach 11

of (pin) := pin

2

m

p
in

 = input landmark power [0,2]

(3)

The output of the of will be a value within [0,1].

The following plot shows the function for different m’s.
Landmark oblivion function

0

0.2

0.4

0.6

0.8

1

1.2

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9 1
1.

1
1.

2
1.

3
1.

4
1.

5
1.

6
1.

7
1.

8
1.

9 2
2.

1
2.

2

landmark power (in)

la
n

d
m

ar
k

p
o

w
er

 (
o

u
t)

m=1.5
m=2
m=3
m=6

Figure 6: Oblivion function with different m

Landmark recognition error
The first error we will deal with is the so-called recognition error. The Koala perceives a
landmark and identifies it wrong.
The solution is that the landmark neuron fires only when a landmark has been continuously
identified over some time.
This goes hand in hand with the landmark oblivion function.

When a landmark is perceived, the potential of the neuron raises. When the landmark is not
seen, the potential is reduced. Together with an activation threshold, the L-Neuron fires only
when a landmark has been recognized for some time, and not too long ago.

The activation function (af) is a step function. The following plot shows the function for
different m’s. The thresholds TH are chosen, so that the activation function will step when a
landmark has been seen for more than 3 times. It can be calculated by applying the oblivion
function n times.

The cortex – a first approach 12

TH = ofn (ofn −1(...(of1(1))))
TH = ofn o ofn −1 o ...o of1(1)

Note: the plot is not good because the steps are not plotted correctly

Activation function

0

0.2

0.4

0.6

0.8

1

1.2

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9 1
1.

1
1.

2
1.

3
1.

4
1.

5
1.

6
1.

7
1.

8
1.

9 2
2.

1
2.

2

landmark power (in)

la
n

d
m

ar
k

p
o

w
er

 (
o

u
t)

m=1.5 (TH=1.6)
m=2 (TH=1.45)
m=3 (TH=1.2)
m=6 (TH=1.02)

Figure 7: Activation function for different m after 3 times seen

We will call this the landmark perception function. It consists of the oblivion function
concatenated with an activation function.

 pf (pin) := af (of (pin)) = af o of (pin) (4)

The following plot shows the perception function for different m’s.
Note: the plot is not good because the steps are not plotted correctly

The cortex – a first approach 13

Landmark perception function

0

0.2

0.4

0.6

0.8

1

1.2

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9 1
1.

1
1.

2
1.

3
1.

4
1.

5
1.

6
1.

7
1.

8
1.

9 2
2.

1
2.

2

landmark power (in)

la
n

d
m

ar
k

p
o

w
er

 (
o

u
t)

m=1.5
m=2
m=3
m=6

Figure 8: Landmark perception function with different m

This can be achieved by a feedback neuron. The schema may look like this:

Figure 9: L-Neuron, perception function

Uncertainties
While the perception function of the L-Neuron is quite simple, there are still more problems
to be solved. For this it is important to understand where we have uncertainties in the system.
We can identify the following uncertainties:

- Position (x,y) of the Koala (provided by the path integrator)
- Orientation α of the Koala (provided by the path integrator, gyroscope and magnetic

compass)
- Perceived distance ∆ to the landmark (provided by the stereoscopic view of the

cameras)
- Perceived angle β towards the landmark (provided by the cameras)
- Estimated position (LMx, LMy) of the landmark (based on the uncertainty of the

Koala position, Koala orientation and perceived distance)

The cortex – a first approach 14

To reduce the uncertainty of the position and the orientation of the Koala is actually the task
of this network. So we will defer them to a later section.

The estimated position of the landmark seems to be most uncertain, because it bases on
multiple uncertainties. For one single estimation, this might be true, but we can estimate the
position many times and calculate the average. This means, the positional uncertainty of a
landmark sinks over time (actually over times estimated).

Figure 10: Landmark position estimation

The major problem is in fact the perceived distance. It is highly erroneous for far distances. In
contrast to the estimated position it cannot be averaged over a longer period of time, because
it changes with the movement of the Koala.
I am afraid I cannot give a good solution to this problem. We could average the distance over
a short period of time. We have this time while the perception function delays the L-Neuron.

The following schema shows a possible way to do this.

The cortex – a first approach 15

Figure 11: Distance averaging

Koala position estimation
The L-Neuron can easily be expanded to estimate the position of the Koala (x’,y’) based on
the estimated landmark position (LMx,LMy) and the perceived distance ∆ to the landmark.
Again we use the highly erroneous ∆’.
NOTE: Maybe we could achieve better error estimation, if we take advantage of this. We use
the same ∆’, once positive and once negative.

The following schema enhances the landmark position estimation schema. The out coming
value is now the estimated position of the Koala.

The cortex – a first approach 16

Figure 12: Koala position estimation

K-Neuron
The outputs of the L-Neurons are as many estimations of the position of the Koala as it
perceives landmarks at a given point in time. The job of the K-Neuron is it to assemble all
these estimations and to produce one definitive position.

As the different landmarks have different uncertainties of the estimated position, this must be
considered in the calculation.

The original position, here called (x0,y0), must be taken in consideration as well. It will be
weighted by the weight w.

The cortex – a first approach 17

Figure 13: K-Neuron position assembly

The cortex – a first approach 18

Goal-directed navigation
With the state network, goal-directed navigation can easily be performed. To find the state
where we want the Koala to move to (the goal), we simply feed the network with the
landmarks the Koala will perceive when it reached the goal.
The network will then respond with the most likely state(s). The next step is to apply a graph
searching algorithm such as A* to find the best path to the goal state. We reduced the problem
to a path finding problem, which we will discuss in the next section.

Path finding
I will not cover this topic in detail here, because I do not know the details. This section is just
an aggregation of first ideas and a topic of major changes.

When in a space without obstacles, the path-finding task would be easy. Simply head in the
direction the next S-Neuron tells us.

In an environment with obstacles we will do the same. But when hitting an obstacle, we need
to circumvent it. If we would not adapt the state network, we would hit the same obstacle
again and again.

But how can it learn the presence of obstacles? For this task it is important to have neurons
even in ‚empty’ spaces (see „The state network“).

The following path finding approach only works with weighted links.

I do not discuss the graph-searching algorithm here. Basically any algorithm might be used.
The heuristics should at least include the distance between two nodes and the weights of the
links.

Dynamic environment
When acting in a dynamic environment (multiagent), we need to be flexible. There might be
doors that are open from time to time, so we cannot possibly be sure a link will lead us at any
time to our goal.
To reflect this, we forget links over time and refresh them while using them. Unused links
will vanish over time.

Links can be forgotten in three ways:
- Local oblivion
- Global oblivion
- Combined oblivion

Local oblivion
- Raise the link weight of the link the Koala used
- Sink the weights of the ones it did not (Only links connected to the active S-Neuron)

Ë Forget the links the Koala does not use

The cortex – a first approach 19

Global oblivion
- Raise the link weight of the link the Koala used
- Sink all others

Ë Forget about areas the Koala has not been for some time

Combined oblivion
- small global oblivion
- bigger local oblivion

Ë Forget the links the Koala does not use quickly, forget areas the Koala has not
been for a long time slowly

We must be careful with link removal though. Otherwise we get separated networks with
unreachable states and a graph search would be incomplete.
Such dead neurons could be removed from the network. This would mean, the Koala forgets
landmarks over time (especially when using global/combined oblivion). This would be useful
when landmarks have a dynamic behavior as well.

For the next section, we wont do any link removal, but set the weight to a vanishing small
value instead.

Obstacles
Let us assume the Koala performed path finding and came up with a path from A to Z. The
first direct segment leads from A to B. So it moves towards the location of B and hits an
obstacle. It will perform these steps to circumvent the obstacle:

1) reduce the weight of AB
2) if the weight of AB < δ

a. find the neighboring neuron of B, which is nearest to the current position. Lets
call it X

b. if A is already linked to X repeat step b
c. link A to X with an initial weight > δ, but smaller than the usual initial weight

w0
3) repeat the path finding process with the new weights.
4) move

This method produces many links that could be removed. A better algorithm would take care
of these.

