
Diploma thesis, 2004

Unsupervised object tracking without a-priori knowledge

Student:

Thabo Beeler
thabo.beeler@hsr.ch

University of Applied Sciences, Rapperswil

Advisor:

Prof. Dr. Josef Joller
joseph.joller@hsr.ch

University of Applied Sciences, Rapperswil

Computer Science Department
University of Applied Sciences Rapperswil
Oberseestrasse 10
8640 Rapperswil, Switzerland
http://www.hsr.ch

Institute of Neuroinformatics
University and ETH Zurich

Winterthurstrasse 190
8057 Zurich, Switzerland

http://www.ini.unizh.ch

For my family
Especially for my dad, my mom, my brother and my sister

Preface

«Computer vision as a field is an intellectual frontier. Like any frontier, it is exciting and
disorganized; there is often no reliable authority to appeal to – many useful ideas have no
theoretical grounding, and some theories are useless in practice.» [4]

Vision is one of the most important senses we have and many tasks in everyday-life could
not be fulfilled, if we could not see – like reading this paper.
While our visual system is highly developed, the artificial counterpart is still at its
beginning.

There are many unsolved and difficult – and therefore very interesting – problems at every
stage of the perception process. They range from low-level vision (perceiving the images)
over mid-term layers (processing the images) up to higher-level stages (interpreting the
images).

In our opinion, the capability to perceive the environment (not only, but especially visually)
is crucial for unsupervised learning and (artificial) intelligence.

Contents v

Motivation

A generic and reliable object-tracking algorithm is the base of any higher-level visual
system. While tracking of arbitrary objects is no challenge to a human at all, it has not yet
been completely solved for artificial systems.

The current state of the art tracking algorithms base mostly on a provided model of the
objects of interest. This model might describe some characteristics of the object, such as the
shape, its texture or its motion. Clearly, such contextual tracking is used by humans as
well.

The problem with this approach is its limited usability. Whenever we want to track a
different type of objects, we need to provide a new model.

The visual system of animals is capable of tracking objects for which it does not have a
model. Based on the tracking it is able to build its own models, its own mental
representation of the perceived environment. An artificial system with similar tracking
abilities would provide a great step towards unsupervised learning and artificial
intelligence.

Up to now, many generic tracking algorithms have been developed and implemented. But
still, their application is limited to simple objects only. The most popular use background
subtraction to identify the regions of interest, which is possible with ‘stationary cameras’
only.

Contents vi

Overview

In our research on visual tracking we first analyzed and
implemented a variety of current state of the art algorithms for
unsupervised, dynamic tracking. Based on this research we
developed two different approaches for the tracking task.

Part I

Chapter 1

To enhance the results, the frames need first to be pre-processed
to reduce noise and other distorting effects. This is achieved by the
combination of two filters, a median a Gaussian convolution.

Chapter 2

Chapter 3

Images contain a lot of information and one approach to retrieve
some of it is to segment the image. Based on region growing, we
propose a fast segmentation algorithm, which is suitable for
cartoons. The border of the generated segments is found by a
very simple edge tracer in order to produce the shape of the
segments.

Chapter 4

The shape as a whole is sensitive to noise, partial occlusion and
other distorting effects. Furthermore it contains a lot of redundant
information. The introduced chain code deals with these issues in a
very fast way.

Part II

Chapter 5

The first approach on optic flow estimation is gradient-based,
because it relies on the intensities of the individual pixels. The
optic flow is detected by finding a corresponding pixel in the next
frame for every pixel of the previous frame.
The approach is called Facette, because it is inspired by the
facetted eyes of insects. Facette uses multi-scale image pyramids
well known from many scale-invariant feature detectors to sense
motion of different intensities. The construction of the pyramids is
slightly more complex, but still simple enough to provide high
performance. It could even be re-implemented in hardware to
provide a high resolution, real-time tracking system.

Contents vii

Part III The second approach is feature-based. Instead of trying to
correlate all pixels of two frames, it first looks for specific regions
in the frames. These are found by feature detectors.

Chapter 6 We compare three different feature detectors in order to find the
best one for this work.

Chapter 7

Chapter 8

The detected regions are encoded by feature descriptors in a way
they can be compared later on.
The task to find corresponding features in two adjacent frames is
called tracking. We introduce and compare three different feature
trackers and enhance them with some fast and efficient post-
processing algorithms to receive a better result.

Chapter 9 Finally, the detected structure is stored in a feature graph, which is
tolerant to temporal inconsistencies in the feature detection.
Furthermore it is able to transform unobserved features, which
enables it to retain the structure of objects even beyond the
border of the screen.

Chapter 12,13,14 Last but not least we provide a quick and dirty overview of the
main concepts we used for the realization of the algorithms.

Contents

Part I – Image pre-processing

1 Image filters... 2
1.1 Image smoothening ... 3
1.2 Median .. 4

2 Image segmentation ... 5
2.1 Region growing .. 6

2.1.1 Description .. 6
2.1.2 Precondition .. 8
2.1.3 Post condition .. 8
2.1.4 Invariant.. 8
2.1.5 Pseudo code.. 9
2.1.6 Complexity .. 9
2.1.7 Optimization.. 9
2.1.8 Examples... 9

3 Edge tracing .. 12
3.1 Precondition ... 13
3.2 Post condition ... 13
3.3 Pseudo code... 13
3.4 Optimization... 15
3.5 Complexity ... 15
3.6 Examples.. 16

3.6.1 Hermes and Ami .. 16
3.6.2 Human .. 16
3.6.3 Prof. Farnsworth .. 17

4 Shape representation.. 18
4.1 Chain Code .. 19
4.2 Peak detection .. 20

4.2.1 Bandpass threshold .. 20
4.2.2 Momentum .. 21

4.3 Complexity ... 22
4.4 Discussion... 22
4.5 Examples.. 23

4.5.1 Bottom of a space shuttle.. 23
4.5.2 Comic head (small) .. 24
4.5.3 Comic head (big) ... 24

Contents ix

Part II – Optic flow

5 Optic flow.. 26
5.1 Facette ... 27

5.1.1 The Cell... 27
5.1.2 Cell pyramid.. 28
5.1.3 Penetration .. 31
5.1.4 Setting up the pyramid ... 32
5.1.5 Optic flow detection... 33
5.1.6 Performance .. 34
5.1.7 Optimization.. 36
5.1.8 Neuronal approach ... 36
5.1.9 Discussion.. 37
5.1.10 Examples... 38

Part III – Features

6 Feature detectors.. 45
6.1 Chain code feature detector... 46
6.2 Harris corners feature detector... 48
6.3 PCA SIFT feature detector .. 49
6.4 Comparison.. 50

6.4.1 Setup .. 50
6.4.2 Performance .. 50
6.4.3 Feature extraction .. 51

6.5 Examples.. 52
6.5.1 Prof. Farnsworth .. 52
6.5.2 Parachute.. 53
6.5.3 Toy Scale .. 54

6.6 Conclusion.. 55
7 Feature descriptors ... 56

7.1 SIFT.. 57
7.2 PCA SIFT .. 57
7.3 Intensity patch... 58
7.4 Conclusion.. 59

8 Feature tracking ... 60
8.1 Distance measurement ... 61
8.2 Correlation measurement... 61
8.3 Correlating the features ... 61

8.3.1 Simple cross correlation.. 61
8.3.2 Enhanced cross correlation ... 62
8.3.3 Optimizing cross correlation ... 63
8.3.4 Benchmark .. 63

8.4 Enhanced tracking... 65
8.4.1 Collapsing features .. 65
8.4.2 Trajector pruning ... 66
8.4.3 Feature tracking with history ... 69

8.5 Examples.. 71

Contents x

8.5.1 Flying aircraft (simple cross correlation)... 71
8.5.2 Flying aircraft (optimizing cross correlation)... 72
8.5.3 Airwolf (simple cross correlation) .. 73

9 Feature graph .. 74
9.1 Nodes.. 75

9.1.1 Connecting the nodes... 75
9.1.2 Node pruning.. 75

9.2 Edges... 76
9.2.1 Spatial correlation.. 76
9.2.2 Temporal correlation .. 77
9.2.3 Initial correlation.. 77
9.2.4 Adapting the correlation... 78

9.3 Graph transformation .. 80
9.3.1 Linear dynamic models ... 80
9.3.2 Swarm model .. 80

9.4 Examples.. 81

Part IV – Conclusion

10 A glimpse back….. 85
11 … while staring ahead .. 87

Part V – Realization

12 Architecture.. 90
12.1 Libraries.. 91

12.1.1 ffmpeg .. 91
12.1.2 Gandalf .. 91
12.1.3 Qt... 91

12.2 Technical equipment .. 92
12.2.1 Hardware.. 92
12.2.2 Operating system... 92

13 First Light.. 93
13.1 Overview.. 94
13.2 Video Stage .. 94
13.3 Feature Detection .. 95

13.3.1 Feature detectors ... 95
13.3.2 Feature descriptors... 96

13.4 Feature Tracking.. 97
13.4.1 Feature trackers ... 97
13.4.2 Trackable feature graph ... 97

13.5 Feature Graph .. 98
14 Facette... 99

14.1 Overview.. 100
14.2 Facette Stage .. 100

14.2.1 Facette pyramid... 100
14.2.2 Facette tracker... 101

14.3 Post-processing Stage... 101

Contents xi

Part VI – Appendix

15 Credits ... 103
16 Table of figures... 104
17 Bibliography .. 106
18 Index... 110

Image pre-processing

1 Image filters

Raw images are almost never in perfect condition. Encodings like mpeg or jpeg reduce the
quality. Noise, dust and scratches add undesired effects. And last but not least, most
images try to reduce a three dimensional space onto a two dimensional plane.

Dealing with such perspective distortions is difficult and not possible with low-level filtering
[4].

Image noise is one of the primary problems in early vision. We use the additive stationary
Gaussian noise model [4] to describe noise in images. In this model, each pixel has added
to it a value chosen independently from the same Gaussian probability distribution. One
possibility to deal with such noise are Gaussian filters.

Image filters 1-3

1.1 Image smoothening

Image smoothening, or blurring, results in signals where pixels tend to be increasingly
similar to the value of neighboring pixels. Smoothening can be done in many different
ways. We use a convolution with a symmetric Gauss kernel [4].

Gσ =
1

2πσ 2

−
x2 + y2()
2σ 2

(1.1)

To speed up the calculation, we use a slightly modified version to produce the kernel:

Gσ ' = 1.5
−

x2 + y2()
2σ 2

(1.2)

Still, this convolution operates in 2-D space. Luckily it can be separated in two 1-D
convolutions. The first one convolves the image horizontally and the second one vertically.

Gσ ' = 1.5
−

x2 + y2()
2σ 2

= 1.5
−

x2

2σ 2

1.5
−

x2

2σ 2

= GH σ 'GVσ '
(1.3)

Figure 1-1 and Figure 1-2 show how the smoothening works with a rather big kernel
(σ = 21).

Figure 1-1: original image Figure 1-2: smoothed image (σ = 21)

Image filters 1-4

1.2 Median

Image smoothening with a Gauss kernel effectively reduces the impact of noise, especially
when the noise has a low standard deviation. Smoothening performs sub-optimal when
images contain so called blind pixels or noise with a high standard deviation. Blind pixels
are pixels, which are permanently erroneous, e.g. broken detection cells.
Another approach, which performs well in such situations, is the median. Its weak point is
that it can only deal with low-density noise.

The median sets the intensity I of a pixel to the value of the majority of the surrounding
pixels.

I(x, y) = M (x, y)k (1.4)
with

M (x, y) = sorted I(x + j, y + i)

j = − N

N

U
i = − N

N

U (1.5)

and

k =
2N + 1()2

2
(1.6)

N is the kernel strength, defining how many neighboring pixels will be considered. The
size of the whole kernel is therefore 2N + 1()2 . In Figure 1-4 the starry field, the logo and

even the bike were filtered by the median. Usually a lower strength is used N ≈ 3() .

Figure 1-3: original image Figure 1-4: Median filtered image N = 21()

Image smoothening and median enhance each other very well. First we apply a median
and then a Gaussian convolution.

2 Image segmentation

One approach to find structures in an image is to segment it. Over the past 20 years many
different approaches have been introduced [13]. They range from pixel clustering[4][11]
over graph representation [14][3][23] to probabilistic segmentation methods [4][15].
Still, segmentation has not been solved in general, but some approaches show good
results in their specific areas.
Some operate on luminance intensity, others on color or texture [24][34]. Also edges and
other features have been examined [20][25].
Last but not least, motion based segmentation is another approach to this problem
[35][36][22]. Motion segmentation will be discussed in [chapter 5].

Image segmentation 2-6

2.1 Region growing

The algorithm proposed in this document was designed to segment comics. The advantage
of cartoons are the simple color gradients. It was not designed for real-world images, as
their texture and lightings are way more complex.
Its advantage over other segmentation algorithms, like graph-cut, is its speed. The
algorithm can segment comic movies in real time.

The algorithm partitions the image into areas of similar color. When running the algorithm
iteratively it would converge to a deterministic segmentation. Experiments showed, that
after one pass the segments differ only slightly from the iterative run, while time efforts sink
dramatically.
For comics, the color channels seemed to be the best criterion. The color can be written as
a three-dimensional vector containing the color channels red, green and blue[4].

C
ur

=
R
G
B

(2.1)

2.1.1 Description

The color of an area A (C
ur

A) is the mean value of all its pixels

C
ur

A = C
ur

=
1
n

C
ur

i
i =1

n

∑ (2.2)

The algorithm chooses one point (it currently starts in the upper left corner, but other
methods would be possible) and sets it as the center of the region. It then iteratively adds
all connected points as long as their similarity

S C

ur
i ,C

ur
j() = C

ur
i − C

ur
j (2.3)

differs not more than θ.

While the area grows, the color center shifts.

C
ur

n +1 =
nC
ur

n + C
ur

i

n + 1
(2.4)

Image segmentation 2-7
As we have three channels of color, this computation is not efficient. We can optimize it
though:

C
ur

n +1 =
nC
ur

n + C
ur

i

n + 1

= C
ur

n
n

n + 1
+ C

ur
i

1
n + 1

(2.5)

Using the fact, that

1 =
n

n + 1
+

1
n + 1

n
n + 1

= 1 −
1

n + 1

(2.6)

the center can be calculated with a minimum effort:

C
ur

n +1 = C
ur

n
n

n + 1
+ C

ur
i

1
n + 1

= C
ur

n 1 −
1

n + 1

+ C
ur

i
1

n + 1

= C
ur

n − C
ur

n
1

n + 1
+ C

ur
i

1
n + 1

= C
ur

n + C
ur

i − C
ur

n() 1
n + 1

(2.7)

Note that the factor
1

n + 1
 is constant for all channels. So we need 1 division, 1

multiplication and 7 additions per step only. The first formula would need 3 divisions, 3
multiplications and 4 additions.

If the point already belongs to a region B, it is only added if

C
ur

A − C
ur

i < C
ur

B − C
ur

i . If this

condition holds, we need to remove the pixel from B to fulfill equations (2.9) and (2.10).
The removal of a pixel shifts the color center just like the addition does. Analog to
equation (2.7) we can calculate the new center

C
ur

n −1 = C
ur

n + C
ur

n − C
ur

i() 1
n − 1

(2.8)

When an area cannot be grown further, a point just outside of the area is chosen as the
center of a new region. This new region then competes with the old one.

After the image has been segmented, the areas will be pruned to limit the amount of areas
to process at later stages. Pruning is done by two criteria:

Image segmentation 2-8
• Size (the size of the area must be > MIN_SIZE)
• Coherence (the coherence determines how compact an area is. It is the amount of

pixels in the border divided by the size of the area. The coherence must be >
MIN_COHERENCE)

2.1.2 Precondition

An RGB color image. Results are better, when the image has been preprocessed by some
filters to remove noise [chapter 1].

2.1.3 Post condition

A segmentation map containing all the segments.

2.1.4 Invariant

The amount of pixels in all areas is the same as the amount of pixels in the image.

I = Ai

i =1

k

U + I − Aj
j =1

k

U (2.9)

k is the amount of areas, I is the image and Ai is the i-th area.

This implies that the areas separate the image exclusively. The condition

 Ai ∩ Aj = ∅ (i ≠ j) (2.10)

is invariant.

Image segmentation 2-9
2.1.5 Pseudo code

Queue q;

function doSegment(Image image)
{

Array areas;
until all points are segmented do
{

Point p = getNextPoint(image);
put p in q;
Area area = new Area();
while q not empty do

grow(area);
put area in areas;

}
pruneAreas(areas);

}

function grow(Area area)
{

Point p = get first Point of q;
if belongsTo(p,area)
{

removeFromArea(p, getArea(p));
addToArea(p,area);
put all sourrounding points of p in q;

}
}

2.1.6 Complexity

The complexity of the algorithm is not easy to determine as it depends on the content of
the image. An image containing only one color would have a complexity of O(n), where n
is the amount of pixels in the image.
The worst case would be an image with many small areas with smooth transitions, because
this would cause many areas to be created and these would need to compete a lot.

2.1.7 Optimization

The variance of an area could be used to determine its inner coherence. A big variance
would indicate that the area needs to be split.
Two adjacent areas could be combined if their mean color vectors are similar and the
resulting variance would be lower than a given threshold.

2.1.8 Examples

Bright yellow lines represent gaps between the segments.

Image segmentation 2-10

2.1.8.1 Gepard

Real world, heavy texture

2.1.8.2 Girl

Real world, fading colors

Image segmentation 2-11

2.1.8.3 The Simpsons

Comic style, big segments

3 Edge tracing

One way to represent an object is its shape. The edge tracer algorithm traces the outline
of a shape. It does NOT detect edges though. Its application is limited to already
segmented shapes.
The algorithm is guaranteed to find the minimum number of points in the shape and it is
able to trace lines (areas without space) as well.

Edge tracing 3-13

3.1 Precondition

The input to the algorithm is a bitmap containing the shape information in Boolean
representation: ‘Inside shape’ and ‘Outside shape’.

3.2 Post condition

The output is a sequence of all points in the shape in correct order. The order is clockwise
and the shape is always closed.

3.3 Pseudo code

function tracePoint(P(t))
{

while(P(t) != P(2) and P(t-1) != P(1)) do
{

m = calculateDirection(P(t),P(t-1)) + 90°);
P(t+1) = getPoint(P(t), m);
while(isOutside(P(t+1)) do

{
m += 45°;
P(t+1) = getPoint(P(t), m);

}
tracePoint(P(t+1))

}
}

Pt is the point at time t .
The function calculateDirection calculates the slope between two points.
The function getPoint returns the point in direction m of the current point.
The function isOutside evaluates a point if it belongs to the current shape.

The condition (Pt ≠ P2 and Pt −1 ≠ P1) assures that we terminate when the shape has
completely been traced. The second part assures, that we terminate only when we
evaluated the whole shape.

As we trace in clockwise order, the next point to be traced lies 90° to the left (-90°) of the
current point in relation to the last traced point. We then evaluate every point in clockwise
order (in 45° steps) until we find a point inside the shape. Note that we need to evaluate
at max until 180° to the right, because this point is the same we came from, and it is
assured that it lies within the shape.

In the following figures, grey pixels represent the shape. Green pixels stand for the edge
pixels while red pixels mark the border outside of the shape. The yellow pixel is the
currently active pixel.

Edge tracing 3-14

Figure 3-1: The first six steps of the tracing process

Figure 3-2: The last three steps of the tracing process

Edge tracing 3-15

3.4 Optimization

When tracing diagonal, the procedure is optimal. When tracing straight (up <-> down, left
<-> right), we can optimize the algorithm by one pixel. We know that the pixel Pt −1

already traced the pixel 90° left of Pt . So we can start with the pixel at 45° left.

Figure 3-3: Tracing diagonal (start 90° left)

Figure 3-4: Tracing straight (start 45° left)

3.5 Complexity

One step needs to evaluate 1 to 7 pixels. As it is assured that the shape will be traced as a
closing circle, turns in left direction must be compensated by turns towards the right side.
We need at least 3 turns to the right for the simplest shape (triangle), which are about 18
pixel evaluations, 6 per corner.
If we add more pixels without adding more corners, the evaluation is 3 pixels per
additional point.
If we add more corners, the angles converge towards 0° because turns to the left will
result in compensating turns to the right.

lim
n→ ∞

nf (2π
n

) + 3 f (2π
3

) ≈ nf (0) ≈ 3n (3.1)

f (0) is 3 evaluations for the un-optimized approach and either 2 or 3 evaluations for the
optimized one. So we have Omin (2.5n) .
The effective complexity will be higher than 3n, because n will never be big enough. Most
shapes will have a complexity of O(4n) , which is still linear.

Edge tracing 3-16

3.6 Examples

All examples have first been segmented [chapter 2] and then been traced. Bold lines result
from two adjacent lines.

3.6.1 Hermes and Ami

Comic style, big segments

3.6.2 Human

Real style

Edge tracing 3-17

3.6.3 Prof. Farnsworth

Comic style, big and medium segments

4 Shape representation

Shapes can be represented in many different ways [33][28][21][31]. It is an essential task
to produce a stable and lightweight description of shapes so they can be stored, retrieved
and recognized later on. The representation can be categorized by their tolerance to
noise, partial occlusion as well as their rotation and scale invariance. Perspective
projection and distortion tolerance is also a major criterion when working on lower
dimensional representations of higher dimensional objects.
The following representation is tolerant towards rotation. It is partially scale invariant as
well and it showed to be quite stable to noise and partial occlusion.

Shape representation 4-19

4.1 Chain Code

The algorithm first computes the vectors between every two points in the shape. Given a
shape S consisting of n points

S = {P0 ,P1,..., Pn −1} (4.1)

the result is a set of vectors

V = {V0

uru
,V1

ur
,...,Vn − 2

u ruuu
}

= {P0P1,P1P2 ,...,Pn − 2Pn −1}
(4.2)

containing n-1 vectors. Note that for cyclic shapes, the sets have the same power. To
reduce the impact of noise we can calculate the vectors using points with an interval of τ.

Next we calculate the slope of every vector in V using

mi = tan(ϕ) =
yi

xi

(4.3)

giving us

M = {m0 ,m1,...,mn − 2} (4.4)

Note that these slopes are neither rotation nor scale invariant. A rotation invariant
representation could be achieved by using the relation of the slopes or their delta. But for
the next step this is not necessary.

Shape representation 4-20

4.2 Peak detection

If we think of the generated chain code as a function output, we can calculate the first
derivation. The max/min of the function should then provide the desired peak points.

f : S → M (4.5)

 f ' : M → ° (4.6)

The used derivation formula is simply

f '(xi) = f (xi) − f (xi −1) (4.7)

Theoretically the calculated peaks should correspond to extrematas (corners) in the
original shape. Experiments showed, that this is only true when τ is chosen to be big. This
is reasonable because of the discrete nature of computer images. Adjacent pixels may
only take one of eight possible directions. In smoothed (continuous) shapes, this problem is
not that important. But smoothening flattens not only noise but also the peaks.

To receive an even more stable result, we introduce two more parameters
- Bandpass threshold φ
- Momentum µ

4.2.1 Bandpass threshold

The first parameter is a bandpass threshold φ. A bandpass is widely used in signal
processing to cut off undesired frequencies.

Because we use the slope m and not the angle ϕ we are sensitive to changes close to ±
π
2

.

Figure 4-1: φ=∞, over detection of corners

where slopes are close to ±
π
2

.

Figure 4-2: φ=2, ‘Optically pleasing’
corner detection

The bandpass reduces this sensitivity in limiting m to −φ, +φ[] . What would be a
reasonable bandpass threshold? This question is not easy to answer, because it depends
on how tolerant we want to be. We achieved ‘optically pleasing’ results with φ≈2, which

Shape representation 4-21

limits the possible angles to −
π
3

, +
π
3

. To use such a low bandpass can be a severe

drawback, because sharp corners will not be detected, as the following example shows.

Figure 4-3: φ=2, upper left corner not
detected

Figure 4-4: φ=∞, all 3 corners detected

Note: If the extra computational effort using tangens is not a concern, one should prefer to
use ϕ instead!

4.2.2 Momentum

The second parameter is called momentum µ. It addresses small corners and changes in
direction over a small portion of the shape only. These irregularities may appear because
of distorting noise. While evaluating the shape, µ assures that only consistent changes in
direction are considered.

Figure 4-5: µ=0, over detection because of
small direction changes

Figure 4-6: µ=7, momentum driven
suppression results in a correct detection

Shape representation 4-22

4.3 Complexity

The complexity of the algorithm is linear: O(n) .

4.4 Discussion

The algorithm finds features in a shape similar to the ones a human selects. Difficulties arise
with smooth shapes, e.g. circles.

Figure 4-7: Key points detected in a circle

Instead of just using the position of the peaks we could use local feature descriptors
encoding other properties like the curvature as well. In order to produce a scale invariant
version, we could apply the algorithm to shape pyramids [7][8][9] instead.
Note that rotation of the shape causes a phase shift of the chain code signal. Rotation
invariance is therefore a matter of reshifting the signal. Because the generated chain code
is very compact, this can easily be done. Another approach to rotation invariance would
be to connect the features in a way they form triangles and to store them in histograms.
Shape should never be the only criterion in object representation. Whenever possible,
other properties like texture or color should be encoded as well.

Shape representation 4-23

4.5 Examples

All examples are organized in two parts. On the right we see the original shape, while the
chain code representation as function plot is on the left. The found peaks are marked with
blue circles on the shape and lines on the chain code plot, resp.

The parameters are described in detail earlier in this document.
• βS Shape blur kernel size
• βCC Chain Code blur kernel size
• φ Bandpass threshold
• µ Momentum
• τ Slope offset

4.5.1 Bottom of a space shuttle

shape and chain code

Figure 4-8: βS=3, βCC=3, φ=2, µ=2, τ=20

Shape representation 4-24

4.5.2 Comic head (small)

shape and chain code

Figure 4-9: βS=3, βCC=3, φ=3, µ=1, τ=40

4.5.3 Comic head (big)

4 times the same shape with different parameters. βS and βCC are 3 for all shapes.

Figure 4-10: φ=5, µ=5, τ=40 Figure 4-11: φ=5, µ=5, τ=4

Figure 4-12: φ=5, µ=0, τ=4 Figure 4-13: φ=∞, µ=0, τ=1

Optic flow

5 Optic flow

«The term "optic flow" refers to a visual phenomenon that you experience every day.
Essentially, optic flow is the apparent visual motion that you experience as you move
through the world. Suppose you are sitting in a car or a train, and are looking out the
window. You see trees, the ground, buildings, etc., appear to move backwards. This
motion is optic flow. This motion can also tell you how close you are to the different
objects you see. Distant objects like clouds, and mountains move so slowly they appear
still. The objects that are closer, such as buildings and trees, appear to move backwards,
with the closer objects moving faster than the distant objects. Very close objects, such as
grass or small signs by the road, move so fast they whiz right by you.» [17]

While this extract explained optic flow in a general way, the next one relates in to the
artificial domain:

«The motion of individual pixels in a video is often called optic flow and is measured by
attempting to find pixels in the next frame that correspond to a pixel in this
(correspondence being measured by similarity in color, intensity, and texture). In principle,
there is an optic flow vector at each pixel, forming a motion field. In practice, it is
extremely hard to measure optic flow reliably at featureless pixels because they could
correspond to pretty much anything.» [4]

For the biological vision, optic flow is of great importance. For the artificial vision, the
sensing of optic flow from video stills has not yet been solved. Many approaches have
been proposed so far. They can roughly be divided in [17]

- The feature-based approach
- The gradient-based approach
- The correlation-based approach

A very good description of optic flow is given in [17]. In this paper we propose a feature-
based approach [chapter 8] as well as a gradient-based approach [chapter 5.1].

Optic flow has many applications especially in the sensor area. Steering and controlling of
unmanned vehicles is a typical one, where reliability and real-time estimation are required.
Algorithms need to be simple, so they can be rebuilt in hardware. The Facette approach
tries to fulfill these criterions.

Optic flow 5-27

5.1 Facette

Facette is inspired by the facetted eyes of insects, therefore the name. Consider Figure 5-1
to get an impression on how optic flow in mosaic vision works. The RGB object proceeds
from the lower left to the upper right corner. While moving, different cells become active
over time.

Figure 5-1: Mosaic vision

This activation history can be interpreted as the movement vector of the object and all
these vectors together would form the optic flow.
This would work if the movement of the object was not faster then one cell per time step. If
we choose a time step close to 0, this restriction would be fulfilled. The amount of frames
and therefore the data to be evaluated would be immense. The visual system of humans
registers a seamless flow at about 25 frames per second. With such a frame rate the
motion between 2 frames will exceed 1 pixel by far.
On the other hand we could increase the size of the cells. If we use cells of the same size
as the translation intensity of the object, we received a continuous activation history.
The drawback is now, of course, that slower motion will not be detected anymore.
Because motion is never homogene (an important fact for optic flow) there is no perfect
cell size.
Facette addresses this problem by using cell pyramids [chapter 5.1.2].

5.1.1 The Cell

Because the algorithm operates in pixel space, a cell was chosen to be a square and not a
hexagon like the ‘cells’ of the facetted eyes.
Hexagons have the advantage that every neighboring cell is equal distant, which is not the
case for squares. Every square cell has 8 neighbors.

Optic flow 5-28

5.1.2 Cell pyramid

The cell pyramid is the core idea behind Facette. The pyramid consists of l Facette layers
(L), where the lowest layer will be labeled L0 and the top-layer Ll−1 . Each layer contains
cells of different size. The cells in the lowest layer are the smallest; the ones in the top
layer are the biggest.
The cells in every layer are arranged in a Nk × M k matrix. In the bottom layer, cells might
correspond to a pixel in the source image or to a cluster of pixels. They could also
represent features, but this approach is not discussed here. This does not matter for the
pyramid and the cells in the bottom layer are considered to have unit size 1.

Figure 5-2: Cells are arranged hierarchically

Every higher layer is formed from the cells of its descendent layer in a way that every cell
in layer k consists of 9 cells from layer k − 1 .

Lk x, y() ⊃ Lk −1 x + i + 1, y + j + 1() (5.1)
where

i, j ∈ -1,0,1{ }
x ∈ Nk

y ∈ M k

This has the advantage that every cell in layer k has a center cell and 8 surrounding cells
in layer k − 1 .

On the other hand, every cell in layer k − 1 contributes to 9 cells in layer k .

Lk −1 x, y() ∈ Lk x -1 + i, y -1 + j() (5.2)
where

i, j ∈ -1,0,1{ }
x ∈ 2,.., Nk −1 − 3{ }
y ∈ 2,.., M k −1 − 3{ }

Optic flow 5-29

This is important as seen in [chapter 5.1.3]. Equation (5.2) does not consider the cells at
the borders. It would not be correct for these cells because the size of the layer decreases
the more the higher the layer is (5.6). The special case at the border is ignored for the rest
of the paper.

The value of the super-cell is the average value of these 9 sub-cells.

Lk x, y() =
Lk −1 x + i + 1, y + j + 1()

j = −1

1

∑
i = −1

1

∑
9

(5.3)

Note that the indices x and y are shifted by 1 each. Alternatively, the formula can be
written as

L xk , yk() =
L xk −1 + i, yk −1 + j()

j = −1

1

∑
i = −1

1

∑
9

(5.4)

where
xk = xk −1 − 1
yk = yk −1 − 1

(5.5)

This is a direct effect from the pyramid structure. The dimension of the matrix at layer k is

Nk × M k = Nk −1 − 2() × M k −1 − 2() (5.6)

The simplicity of equation (5.5) is one reason we decided that a super-cell needs to consist
of 9 sub-cells. Every cell has exactly one center cell in every lower layer and is the center
of a super-cell in every upper layer as demonstrated in Figure 5-3.

Theorems (5.1) and (5.2) lead to a structure of the pyramid as seen in Figure 5-3 and
Figure 5-4.

Optic flow 5-30

Figure 5-3: Pyramid structure (schematic)

Figure 5-4: Example of a pyramid with 30 layers (every fifth layer is displayed)

Optic flow 5-31

As stated at the beginning of this chapter, every layer is responsible for sensing motion of
a specific intensity. While the lowest level senses small motion based on one unit only,
upper layers sense more intense motion of multiple units at a time.
This means that the upper layers do only sense motion of unit-groups, or swarms. The
penetration effect [chapter 5.1.3] relaxes this restriction. How big the swarm needs to be
to be tracked correctly depends on the content of the image. In clutter-free images even
single units can be sensed, but usually the swarm size depends on the amount of
translation.

5.1.3 Penetration

The penetration describes how the influence of a single unit in layer k is in the upper
layers. Figure 5-5 shows the penetration schematically.

Figure 5-5: Penetration of a cell in its upper 3 layers

Theorem (5.2) states that every unit influences 9 units in its adjacent upper layer. The
penetration can be written as a recursive formula

Θk +1 = Θk + 2()2
(5.7)

Formula (5.7) states how many cells are influenced, but not how strong this influence is.
The amount of influence decreases proportional to the distance ∆ of the two cells
(influencer and influencee) in the pyramid.

∆(xk x0 , yk y0) = k − xk − x0 − yk − y0 (5.8)

Optic flow 5-32

ι(xk | x0 , yk | y0) =

ι xk −1 + i | x0 , yk −1 + j | y0()
j = −1

1

∑
i = −1

1

∑
9

1, if ∆(xk x0 , yk y0) = 0

0, if ∆(xk x0 , yk y0) < 0

(5.9)

According to (5.9) the influence of cell A on cells B and C in Figure 5-5 is ι B | A() =
1
9

A

and ι C | A() =
19
729

A , resp.

As one can see, the influence decreases faster towards the periphery while remaining
higher in the epicenter.

5.1.4 Setting up the pyramid

How many layers does the pyramid need to consist of? This depends on the intensity of the
motion to be captured. The cells of the top layer need to consist of at least as many unit
cells as the maximum intensity of the optic flow. This leads to the equation

 l = floor 0.5 δ + 2()() (5.10)

or to avoid the floor function

l =

δ + 2 − δ mod2
2

(5.11)

For biggerδ the formula converges to

l ≈

δ + 1.5
2

(5.12)

Optic flow 5-33

5.1.5 Optic flow detection

Currently the optic flow is detected by comparing the Facette pyramids (Λt , Λt +1) of frames
t and t + 1, resp. The comparison process is fairly simple. Starting at the top layer, we
compare every cell in Λt +1 to the corresponding cell and its 8 neighbors in Λt .
Corresponding means the cells are at the same position in the layer matrices. The cell with
the highest correlation is selected. The tuple of this cells form a motion vector, where the
cell Lt xl−1, yl−1() in Λt is the source and the cell Lt +1 xl−1, yl−1() in Λt +1 is the destination of
the vector.

Next, we sink in both pyramids one level, retaining the motion vector. Sinking is performed
by applying equation (5.5). Now we compare the source cell to the destination cell and its
8 neighbors in this layer. This is done recursively until the bottom layer is reached. The
resulting motion vectors in the bottom layer form the optic flow.

The whole process is shown in Figure 5-6.

Figure 5-6: Optic flow estimation within the pyramid layers

The green cell remains static throughout the whole process. It is the source cell in pyramid
Λt . The red cells in pyramid Λt +1 mark the possibly correlated cells. The blue cell is the
cell with the highest correlation.
The arrows in leftmost fields mark the calculated motion vectors.

With every step we restrict the possible correlating unit cells because we restrict the
possible correlating cells in layer k − 1 to 9 cells. These are the 9 sub-cells the super-cell in

Optic flow 5-34

layer k consists of. We need to compare the cell in Λt to these cells only, which is exactly
what we wanted. This is the second reason we defined a super-cell to consist of 9 sub-cells.

5.1.6 Performance

The performance of Facette depends on the intensity of the motion to be detected and the
size of the frames only. In contrast to the feature-based approach [chapter 8] it does not
depend on the content. This provides a static runtime, which is essential to many real-time
applications.

The amount of comparisons which need to be calculated are given by

 O = 9l Nl−1M l−1() (5.13)

By applying equation (5.11) we get

O =

9 δ + 2 − δ mod2() Nl−1M l−1()
2

(5.14)

and for bigger δ

O ≈

9 δ + 1.5() Nl−1M l−1()
2

(5.15)

Experiments support this equation. On our test computer [chapter 12.2] we benchmarked
frames with l from 4 to 20 and N × M from 32x22 up to 500x470. The relation

θ =
Total time t()
expected O

(5.16)

remained almost constant at a value of 0.5 µs with a standard deviation of 0.02 µs.

Given a frame rate of 5 fps and a translation δ of 20% of the frame size, we can
calculate the maximum frame size for which real-time optic flow estimation on this
computer is possible.

The maximum total tracking time per frame is

t =
1
5

 [s] (5.17)

Optic flow 5-35

Reforming equations (5.16) and (5.13) gives us

O =

t
θ

= 9l Nl−1M l−1() (5.18)

By applying equations (5.6) and (5.12) formula (5.18) becomes

t
θ

= 9 δ + 1.5
2

N − δ − 1.5() M − δ − 1.5()()

= 9 2δ + 3
4

2N − 2δ − 3
2

2M − 2δ − 3
2

=
9
8

2δ + 3
2

2N − 2δ − 3() 2M − 2δ − 3()

(5.19)

Assuming an aspect ratio of 4:3, M can be rewritten as

M =
3
4

N (5.20)

and δ can be expressed as

δ =
1
5

N (5.21)

By applying equations (5.21) and (5.20) to (5.19) we get

t
θ

=
9
8

2N + 15
10

2N −
2
5

N − 3

3
2

N −
2
5

N − 3

8000
9

t
θ

= 2N + 15() 16N − 30() 11N − 30()
(5.22)

This is a polynom of order 3. We solved it numerically for our test computer and received

N ≈ 100

which leads to a frame format of

100 × 75

We tested the algorithm with this frame size and got results as expected around 200 ms.

Optic flow 5-36

This might not seem a big format, but as Facette can deal well with downsampled images,
it can in fact handle quite big frame sizes. If we use a downsampling factor of 5, which still
delivers good optic flow detection, we are able to track frames of size

500 × 375

in real-time. By applying some optimizations [chapter 5.1.7] this format can be increased
even more.

5.1.7 Optimization

Two factors in (5.13) can be modified to get better performance. Either the amount of
layers l or the size of the matrix N × M can be reduced.

5.1.7.1 Reducing l

Experiments showed that most of the frames do not contain movement at maximum
intensity. Most of the time the motion intensity is a lot lower.
A better approach therefore would be not to start in the top layer. Instead the algorithm
could first examine a lower layer. If this layer showed no optic flow, chances are high that
the upper layers would not show motion as well. We can effectively prune away a part of
the pyramid. In this case we could save additional computation time by building the
pyramid iteratively. First we build all the layers up to this key-layer. If we don’t detect
optical flow, the rest of the pyramid needs not be built. Otherwise we build the pyramid up
to the next of these key-levels, and so on.
How many of these key-layers to choose and at which intensity has not yet been
examined.

5.1.7.2 Reducing N × M

Reducing N × M is the same as reducing the amount of image data to be processed. The
parts of the image, which do not show motion do not need to be processed. These can be
avoided with saliency maps. These maps (mostly binary) define regions of interest. For
example the center of the image or the moving regions.

To detect which parts of the image are in motion we need only to subtract frame t from
frame t + 1. This reliably produces a saliency map of the moving regions.

5.1.8 Neuronal approach

Figure 5-5 reminds somehow of a MLP (multilayer perceptron) neuronal network. In fact,
Facette could be realized as a neuronal network similar to MLP's. The bottom layer of the
pyramid would form the perception layer (retina cells), the top layer corresponds to the
output layer and the remaining layers to the hidden layers.
This approach would have some interesting advantages towards the classic
implementation. Shape preference, blending of undesired parts and direct matching with
spiking neurons (no need to build the second pyramid) are just a few.
The neuronal approach remains a topic of research.

Optic flow 5-37

5.1.9 Discussion

This chapter described a new approach to optic flow estimation. Its main advantage is its
simplicity, which allows it to be rebuilt in hardware, but the concept itself could be
expanded to other capabilities [chapter 5.1.8].
Tests have showed good results both in performance and detection, but not perfect ones.
Because it is a gradient-based approach, it fails when the gradients are not distinct
enough. This is a well-known problem [19]. A small percentage of these wrongly detected
flow vectors could be pruned using post-processing methods like trajector pruning [chapter
8.4.2] or a derivate of the median filter [chapter 1.2].
Definitely more research is required to evaluate Facette thoroughly.

Optic flow 5-38

5.1.10 Examples

All examples are made up of three kinds of images.
- Optic flow
- Motion field
- Source-sink field

5.1.10.1 Optic flow

The first category shows the detected optic flow. The red vectors show the direction of the
flow, starting at the square.

Figure 5-7: optic flow

5.1.10.2 Motion field

The second type shows the detected motion fields. These are fields of clustered motion
vectors. The vectors are clustered with k-means [1] using their size and angles as the
correlation measurement.

Figure 5-8: motion field

Optic flow 5-39

5.1.10.3 Source-sink field

The third class of images display so called source-sink-fields. The white cells state that two
or more motion vectors point to this field. This is an indication for an occlusion, because
cells from frame t − 1 shift over cells from frame t for which the algorithm does not find
any correlating cell.
The black cells are cells where no motion vector points at. These are the source of the
motion.
The light grey cells are in motion and indicate a moving swarm (a collection of cells with
same motion intensity).
Finally, the dark grey cells indicate static cells.

Figure 5-9: Source-sink field

Optic flow 5-40

5.1.10.4 Long house

This is one of the classical images used in artificial vision. It was taken from Berkeley [38].
The original image (510x480) was downsampled by a factor of 5 to (102x96). For δ we
used 10, which lead to a total estimation time of 151 ms.

Figure 5-10: Optic flow. Note the stronger motion intensity at the bottom because the
house rotates around a pole near to the roof.

Optic flow 5-41

Figure 5-11: Motion field. The stronger motion seen in Figure 5-10 finds its representation
in the bright green fields, which as well indicate high intensity.

Figure 5-12:Source-sink field. Again the stronger motion at the bottom leaves its tracks.

Optic flow 5-42

5.1.10.5 Walking robot

The following sequence shows a walking robot and the resulting optic flow, again with the
associated motion fields.
The frames (190x255) were downsampled by a factor of 5 to 38x51. δ was set to 10
once again. The optic flow was calculated at 22 ms per frame.
Note how well the white cells reflect the shape of the robot.

Optic flow 5-43

Features

6 Feature detectors

Features are regions in an image with high entropy. They need to be easy detectable and
distinctable enough so we can determine what object the feature(s) belong(s) to.
The visiual system of humans makes extensive use of features. When looking at an object
we look for distinct points. The more we find the better we recognize the object.

Finding good features is still a topic of intense research [7][8][9][10][21][27]. In this work
we integrated three different feature detectors. The aim was to inspect the detectors in a
comparable environment for their performance. The implemented feature detectors are:

- Chain code feature detector
- Harris corners feature detector
- PCA SIFT feature detector

We will first briefly describe their functionality and then compare their performance.

Feature detectors 6-46

6.1 Chain code feature detector

The chain code feature detector bases on chain codes [chapter 4.1] introduced in this
work. It focuses on the detection of peaks in shapes.

The detector first segments the image using a region-growing algorithm [chapter 2.1] and
produces an outline of the areas using an edge tracer [chapter 3].
Finally, the shapes are analyzed using the chain code generation algorithm [chapter 4.1]
to produce the features.

While the detection performs well, the segmentation process produces unreliable areas,
which in turn lead to unstable features.
Also the detector produces almost every feature twice, because the segmentation
produces areas, which share their edges with one or more other areas. In this way, every
edge is traced and encoded twice, except the edges at the borders. But these edges
should not be encoded anyway, as they are most likely to exist only because the image
captures only a part of the world.
This is a subject of enhancement. Preliminary edge pruning could enhance the
performance.

The following charts show that most of the computation time is used by the segmentation
process in order to create the segments. Instead of using a region-growing algorithm, one
could use an edge detector, like the Canny edge detector [11]. This could reduce the time
expenses and stabilize the feature detection process.

Feature detection time

0

50

100

150

200

250

300

350

400

27648 49152 76800 76800 76800 84480 245760

Image size [pixel]

tim
e

[m
s] Total [ms]

Segmentation [ms]
Edge Trace [ms]
Chain Code [ms]

Figure 6-1: Image sizes from 192x144 up to 512x480 (avg. over 50 frames each)

Feature detectors 6-47

Time-percentages in the detection process

3%
9%

88%

Segmentation
Edge Trace
Chain Code

Figure 6-2: The segmentation process uses almost 90% of the time used in the detection
process

Feature detectors 6-48

6.2 Harris corners feature detector

Harris corners is the most famous corner detector. For details please refer to the literature
[5]. The following extract was taken from [6].

«Consider the following matrix

M =

∂I
∂x

2 ∂I
∂x

∂I
∂y

∂I
∂x

∂I
∂y

∂I
∂y

2

(6.1)

where I(x, y) is the grey level intensity. If at a certain point the two eigenvalues of the
matrix M are large, then a small motion in any direction will cause an important change of
grey level. This indicates that the point is a corner. The corner response function is given
by:

R = det M − k(traceM)2 (6.2)

where k is a parameter set to 0.04 (a suggestion of Harris). Corners are defined as local
maxima of the cornerness function. Sub-pixel precision is achieved through a quadratic
approximation of the neighborhood of the local maxima.»

Feature detectors 6-49

6.3 PCA SIFT feature detector

SIFT stands for Scale Invariant Feature Transform and was invented by David G. Lowe
[7][8][9]. PCA SIFT is an improvement of the SIFT technology proposed by Yan Ke and
Rahul Sukthankar [10].

We did not use the PCA SIFT feature descriptors but only the scale-invariant feature
detector. We integrated directly the source code from Yan Ke and Rahul Sukthankar, with
their courtesy.
As we did not need scale invariant features for the tracking task (change in scale is
assumed to be small) we modified the code to provide better performance [7][8][9][10].
The changes are mainly:

- Build only 1 DoG (difference of Gauss) octave
- Don’t double the image size
- Don’t calculate keypoint orientation
- Don’t calculate feature descriptors

This assures comparable testing conditions.

Compared to the other detectors used in this work, the SIFT detector finds features not only
at edges but also inside of areas.

Feature detectors 6-50

6.4 Comparison

6.4.1 Setup

All edge detection algorithms have been tested under the same conditions [chapter 12.2]
to produce comparable results. The results are averaged over 50 frames in each movie
file. The files have been chosen randomly to avoid preferred conditions for one of the
algorithms.
They have been evaluated in terms of their performance and the amount of produced
features. While the performance is easy to compare, the produced features depend highly
on the chosen parameters. In addition, we cannot define how many features are optimal
per image. Other classification numbers, like the feature distribution would be more
appropriate. But even these cannot state directly whether the algorithm is good or not.
Therefore, the provided values are used to demonstrate how different the three algorithms
perform on different images.

6.4.2 Performance

The performance measurements are in milliseconds.

Image size Chain Code Harris Corners PCA SIFT
27648 (192x144) 45.92 8.41 647.09
49152 (192x256) 66.27 17.12 1176.43
76800 (320x240) 108.49 27.36 1173.42
76800 (320x240) 116.25 24.37 1172.29
76800 (320x240) 102.66 28.27 1782.03
84480 (352x240) 127.72 28.36 1987.99
245760 (512x480) 344.60 74.10 5771.83

It can easily be seen, that the SIFT algorithm is outperformed by the others by far.

0

1000

2000

3000

4000

5000

6000

7000

27648 49152 76800 76800 76800 84480 245760

Image size [pixel]

De
te

ct
io

n
tim

e
[m

s]

PCA
Chain Code
Harris Corners

Figure 6-3: Performance benchmark

0

50

100

150

200

250

300

350

400

27648 49152 76800 76800 76800 84480 245760

Image size [pixel]

De
te

ct
io

n
tim

e
[m

s]

Chain Code
Harris Corners

Figure 6-4: Harris Corners and Chain Code

Harris Corners detector is in average 70 times faster than the PCA SIFT scale-invariant
feature detector and 4 times faster than the Chain Code detector, resp.
This is the main reason we focused on Harris Corners in this work.

Feature detectors 6-51

6.4.3 Feature extraction

Image size Chain Code1 Harris Corners PCA SIFT2

27648 (192x144) 70 53 59
49152 (192x256) 34 113 44
76800 (320x240) 147 170 108
76800 (320x240) 172 82 75
76800 (320x240) 141 207 118
84480 (352x240) 167 79 32
245760 (512x480) 333 113 262

The following graph shows that the amount of features extracted depends strongly on the
size of the image.
In addition the amount of detected features per detector varies. This because the detectors
extract features based on different criteria. None is, of course, content invariant. This could
mean that we should combine one or more feature detectors to provide more reliable
feature extraction.

0

50

100

150

200

250

300

350

27648 49152 76800 76800 76800 84480 245760

Image size [pixel]

Fe
at

ur
es

 d
et

ec
te

d

PCA
Chain Code
Harris Corners

Figure 6-5: The amount of features detected varies depending on the content of the image

1 The effective amount of unique features is assumed to be lower [chapter 6.1]
2 When operating on double sized images, more features would have been detected [10]

Feature detectors 6-52

6.5 Examples

The following examples show some images and their extracted features. In addition the
time taken is mentioned.

6.5.1 Prof. Farnsworth

Comic style, 320 x 240, 24-bit RGB color image

Chain Code

Time taken: 106.43 ms
Features detected: 130

Harris Corners

Time taken: 87.13 ms
Features detected: 198

PCA SIFT

Time taken: 1818.93 ms
Features detected: 123

Feature detectors 6-53

6.5.2 Parachute

Real world, 352 x 240, 24-bit RGB color image

Chain Code

Time taken: 147.36 ms
Features detected: 132

Many features were detected at
the edge of the image. This is a
flaw of the segmentation process.

Harris Corners

Time taken: 24.49 ms
Features detected: 21

PCA SIFT

Time taken: 1996.75 ms
Features detected: 63

Many features have been
detected on the plain. This is
optimal for optical flow
estimation.

Feature detectors 6-54

6.5.3 Toy Scale

Lab picture, 384 x 240, 8-bit grayscale image

Chain Code

Time taken: 138.18 ms
Features detected: 110

Many features have been
detected in the background. The
segmentation process
oversegments smooth gradients.

Harris Corners

Time taken: 29.80 ms
Features detected: 126

Features are almost only detected
at the edge of the scale because
of the strong contrast.

PCA SIFT

Time taken: 2173.47 ms
Features detected: 49

Feature detectors 6-55

6.6 Conclusion

This paper compared three feature detectors for their performance. Harris Corners
outperforms the others by far, but has its flaws when operating on images with less
contrast.

PCA-SIFT scale-invariant feature detector produces features not only at the edges. This is a
major advantage in some images. Especially on low contrast images feature extraction is
more stable. The algorithm showed to be way too slow for (real-time) video evaluation.

The Chain Code feature detector produces unstable features because of the underlying
image segmentation process. A better segmentation or edge detection could provide a
massive performance gain as well as stable features.

There is no perfect feature detector. Further experiments should combine different
approaches to provide better results. The drawback then is the higher performance
requirement. In our future work we used mainly the Harris corners feature detector.

7 Feature descriptors

The features found by the feature detectors [chapter 6] need to be encoded in order to be
useful for the tracking process [chapter 8].
It showed, that the selection of appropriate feature descriptors is crucial for success.
Again, many different types of feature descriptors were proposed in the last few years
[9][10][2]. They can be classified in respect to their tolerance towards

- orientation
- scale
- illumination and color changes
- projective distortion
- performance (generation, matching)

Feature descriptors 7-57

7.1 SIFT

Recently David G. Lowe proposed an interesting approach on feature descriptors
[7][8][9]. SIFT features need to be detected by a scale invariant feature detector. As seen
in [chapter 6] the performance of such detectors is rather poor.
The following extract is a compact description of the SIFT descriptor taken from [10].

«The standard keypoint descriptor used by SIFT is created by sampling the magnitudes
and orientations of the image gradient in the patch around the keypoint, and building
smoothed orientation histograms to capture the important aspects of the patch. A 4x4
array of histograms, each with 8 orientation bins, captures the rough spatial structure of
the patch. This 128-element vector is then normalized to unit length and thresholded to
remove elements with small values.
The standard SIFT keypoint descriptor representation is noteworthy in several respects:

1) The representation is carefully designed to avoid problems due to boundary effects
– smooth changes in location, orientation and scale do not cause radical changes
in the feature vector.

2) It is fairly compact, expressing the patch of pixels using a 128 element vector.
3) While not explicitly invariant to affine transformations, the representation is

surprisingly resilient to deformations such as those caused by perspective effects.
On the other hand, the construction of the standard SIFT feature vector is complicated and
the choices behind its specific design (as given in [9]) are not clear.»

7.2 PCA SIFT

Yan Ke and Rahul Sukthankar proposed an enhanced version of the SIFT technology
[chapter 7.1]. Their feature descriptor has been proved to be «theoretically simpler, more
compact, faster and more accurate than the standard SIFT descriptor» [10].
Still the calculation of the descriptors is slow compared to other methods [chapter 7.3].

Feature descriptors 7-58

7.3 Intensity patch

This feature descriptor is very fast to be calculated and matched. On the other hand it is
almost not tolerant to scale, orientation, illumination and affine transformations at all.

The feature descriptor is created by sampling the neighborhood of the feature. This patch
forms the feature descriptor. We adapted the formula found in [2]

FD = I(x − j, y − i) − I

i = − N

N

U
j = − N

N

U (7.1)

to

FD ' = I(x + j, y + i)

j = − N

N

U
i = − N

N

U (7.2)

because it is simpler to calculate and performs comparable when illumination changes are
small.
The patch forms a (2N + 1) × (2N + 1) matrix.

Figure 7-1: Correlated features from two different images. Image from [2].

Feature descriptors 7-59

Figure 7-2: Extracted feature descriptors from Figure 7-1. N=3. Image from [2].

The matching of the feature descriptors is equal simple to its generation. Again we
modified the formula found in [2]

C = I x − j, y − i() − I() I ' x '− j, y '− i() − I '()
j = − N

N

∑
i = − N

N

∑ (7.3)

because we wanted a probability distribution within [0,1], where 0 means the features
match not at all and 1 stands for a complete match. We used a least squares approach:

pFD = 1 −
I x − j, y − i() − I ' x '− j, y '− i()()2

j = − N

N

∑
i = − N

N

∑
(2N + 1)2

= 1 −
FD j,i() − FD ' j,i()()2

j = 0

2 N +1

∑
i = 0

2 N +1

∑
(2N + 1)2

(7.4)

Note that FD and FD ' both refer to (7.2).

7.4 Conclusion

Because we operate on continuous movie sequences we can assume that the changes in
orientation, scale and perspective projection remain small between the images.
Illumination could change massively, i.e. when someone turns off the lights.
On the other hand a fast evaluation of the motion sequences is desirable. Therefore we
decided to use the simpler Intensity patch feature descriptor.

8 Feature tracking

The second approach to optic flow estimation [chapter 5] is to track special features and
derive the optic flow from them.
Basically this means we need to find the corresponding feature in frame t + 1 for every
feature in frame t . Let’s call these matched features a feature tuple.

FT = (Ft ,Ft +1) (8.1)

Usually it is not possible to find a feature tuple for every feature. Noise, occlusion,
changes in illumination and perspective projection lead to feature mismatch.
A stable feature tracker should be able to find all existing feature tuples, correctly identify
new features and ignore redundant features. Such a matching process is mostly NP hard.

Feature tracking 8-61

8.1 Distance measurement

As we consider continuous frames only, features might not move further than a given
threshold σ . Therefore we need to match Ft +1 only to features Ft within a
2σ + 1() × 2σ + 1() window. The closer two features are, the higher the probability they

belong to the same tuple. We use a Gaussian distribution to calculate this probability

p∆ = e
−

∆x2 + ∆y2

σ 2 (8.2)

8.2 Correlation measurement

The whole correlation of two features is given by

p = p∆ pFD (8.3)

where p∆ is the distance correlation (8.2) and pFD is the feature descriptor correlation
[chapter 7].

8.3 Correlating the features

We implemented several approaches to this problem. The simplest use only the similarity
measurement (8.3), while more elaborate trackers use the feature distribution and
neighbor likelihood as well.
Because the images from motion sequences change only a little between two frames, the
latter showed not to perform better than the simple ones. Often they performed even
worse, because the feature detection process misses features and redetects them in later
frames. The lack of some features at one position in the image leads to completely different
feature distribution. We will only discuss the simpler approach in this paper.

8.3.1 Simple cross correlation

Simple cross correlation tries to find for every feature Ft +1 a feature Ft such that c Ft ,Ft +1()
is maximal.
This might result in a sub-optimal overall match as seen in Figure 8-1.
Simple cross correlation matches according to the red lines because

c(A, B ') = max(c(A, A '),c(A, B '),c(B, B '),c(B, A '))

which finally leads to the matched tuples

{(A, B '),(B, A ')}

The overall correlation would be higher if the matched tuples would be according to the
green lines

Feature tracking 8-62

{(A, A '),(B, B ')}

Figure 8-1: Feature mismatch

The enhanced cross correlation and optimizing cross correlation feature trackers try to
avoid this phenomenon [chapters 8.3.2 and 8.3.3, resp.].

The performance of this simple tracker is rather good as seen in Figure 8-6 and Figure 8-7.

The runtime of the algorithm is O(NM) because it tries to find a matching partner in Ft for
every feature in Ft +1 . N and M are the amount of features in Ft and Ft +1 , resp.
This can be enhanced by matching to the features within a maximum translation window
only [chapter 8.1].

8.3.2 Enhanced cross correlation

The problem in Figure 8-1 is that both A and B favor A’. Instead of assigning A’ to B like
the simple cross correlation does, this feature tracker tries to find the second best matches
for A and B, resp.
Then it assigns the tuples such that the sum c(Ft ,Ft +1) + c(Ft ',Ft +1) is maximal. Because we
consider two tuples at a time only, the probability is high that we will end up in a local
maximum.
As seen in Figure 8-3 the result is sometimes even worse than for the simple cross
correlation (Figure 8-2).

Figure 8-2: Simple cross correlation Figure 8-3: Enhanced cross correlation

Feature tracking 8-63

8.3.3 Optimizing cross correlation

This tracker tries to maximize the overall correlation ctot to find the optimal matches,
optimal in terms of the matching function. As the name states, this is an optimization
problem and as described in [1] such problems are best solved with local search
strategies.
We use the Hill-Climbing algorithm, sometimes also called greedy local search because it
grabs a good neighbor state without thinking ahead about where to go next. This
algorithm has three well-known flaws (local maxima, ridges and plateaus), which may
result in sub-optimal solutions.

Optimization problems are generally NP hard, such is this one. To speed up things,
optimizing cross correlation first applies the simple cross correlation [chapter 8.3.1] to
produce the initial correlation seed.
This reduces the runtime of the optimizing process to O α n!()() , where α is the re-

matching factor. The best-case runtime is therefore O n!() while the worst case is

O n2 n!()() , which is unlikely to ever happen as the original seed was chosen heuristically.

Based on the correlation seed, it now searches for tuples {Ft ,Ft +1} and F 't ,F 't +1{ } where

c Ft ,F 't +1() + c F 't ,Ft +1() > c Ft ,Ft +1() + c F 't ,F 't +1() and swaps them. This algorithm
converges to a global maximum with respect to its seed correlation.

Figure 8-4: simple cross correlation Figure 8-5: optimized cross correlation

Figure 8-5 shows how the optimized cross correlation solves the matching problem
discussed in [chapter 8.3.1].

8.3.4 Benchmark

The following benchmark compares the performance of the simple cross correlation tracker
[chapter 8.3.1] and the optimizing cross correlation tracker [chapter 8.3.3]. Please refer
to [chapter 8.5] for a comparison of their tracking capabilities.

Feature tracking 8-64

Figure 8-6: Total tracking time

Figure 8-7: Tracking time per feature

It might be surprising, that both trackers perform equally well. This is because the
algorithms use a different amount of memory. While the simple cross correlation uses no

Feature tracking 8-65

additional memory, the optimizing cross correlation uses an internal lookup matrix of the
size Ft × Ft +1 to speed up the optimization process.

The spikes and the increasing trend in Figure 8-7 appear because of the feature re-
matching. This happens when the correlations of the features are close to each other. The
more distinct the features are, the less re-matching occurs.

8.4 Enhanced tracking

In addition to solely correlate the features based on their similarity (8.3) we can enhance
the result by post processing the tuples. A very famous approach is the Hough transform
[4][16]. Despite its popularity we did not use the Hough transform. Instead we applied
two different approaches, both much simpler and way faster than the Hough transform.

8.4.1 Collapsing features

The first one addresses the problem of inconsistent feature detection discussed in [chapter
6]. Instead of tracking all features we collapse features within a certain distance radius rc

to so-called superfeatures. A superfeature averages all the properties of its sub-features
(Position, orientation, feature descriptor).
This has two positive effects: 1) the performance improves because we have fewer features
to track and 2) these superfeatures tend to be more stable.
I.e. the detector detected 5 features in the first frame within this distance radius, but only 3
in the second frame. If we tracked all features, we would have a mismatch of 2 features. If
we collapse these features to 1 each, we have one tracked tuple only.
Of course, rc should not be too big, because otherwise important features would be lost
and the superfeature would be misplaced.
To avoid collapsing distinct features we could restrict the algorithm to only collapse
features with high feature descriptor correlation (pFD).
One drawback of this method is the flickering of the tracked superfeatures, an effect which
takes place because of the position averaging. This effect has its impact on the trajector
pruning [chapter 8.4.2] and the graph stability [chapter 9.2.1].

For the following examples we set rc to 10. Using Harris corners, this reduces the amount
of superfeatures to about 50% of the originally detected features.

Feature tracking 8-66

Figure 8-8: Detected features (198) Figure 8-9: Remaining superfeatures (91)

Figure 8-10: Detected features (90) Figure 8-11: Remaining superfeatures (41)

8.4.2 Trajector pruning

The found tuples describe the translation of the features over time. The movement vectors

T
ur

=
Ft (x) − Ft +1(x)
Ft (y) − Ft +1(y)

 (8.4)

are called trajectors. The idea behind trajector pruning comes from the swarm theory [1].
The alignment axiom of the boids theory states that adjacent boids steer toward the
average orientation of their neighbors.
We can turn around this axiom such that a boid only belongs to a swarm when his
direction is not completely different from its neighbors.

It is a high probability that adjacent features belong to the same object. As the object
moves, they should move too. The translation should conform with the object and therefore
with the surrounding features.
Because features also have neighbors on different objects, they need to conform with a
fraction of the neighborhood only.

Feature tracking 8-67

To compare two trajectors we need once more a similarity measurement. Orientation and
size of the trajectors should be compared. The output domain of the resulting function
should lie within [0,1].

Size
The correlation of the two trajectors u,v in relation to their length is defined as Gaussian
distribution. The output domain is defined within [0,1], where 1 states the vectors are of
the same size and 0 implies they are not correlated at all.

p∆ = e
−

u − v()
σ 2

(8.5)

Orientation
Again, the desired output should be defined within [0,1], where 0 states no correlation at
all.

The output of the cosine would be maximal at an angle of 0° but it is distributed within [-
1,1]. To enforce the desired output we can use the following cosine instead

pϕ = cos2 ϕ
2

 (8.6)

 Using the fact that

cos2 α
2

=
1 + cos α()

2
(8.7)

the formula resolves to

pϕ =
1 + cos ϕ()

2
(8.8)

Orientation of two vectors can be compared with the scalar product

cos(ϕ) =
uv

u v
(8.9)

We can now apply the scalar product (8.9) to (8.8) and form

pϕ =
1 + uv

u v
2

=
1
2

+
uv

2 u v

(8.10)

Feature tracking 8-68

The complete correlation function p is defined as the product of (8.5) and (8.10).

p = pϕ p∆ (8.11)

Figure 8-12: Correlation function Figure 8-13: Seed trajector To

uru

Figure 8-12 shows the correlation field of trajector

T0

uru
=

2
−7

 and trajectors

T
ur

i =
x
y

 . The

trajector is plotted in Figure 8-13 for convenience.

As seen in Figure 8-12 the correlation differs most close to (0,0). Small trajectors are not
as stable as large ones due to the discrete nature of the image space. The flickering effect
discussed in [chapter 8.4.1] aggravates this phenomenon. This means that small trajectors
do not produce a stable trajector field and pruning is not applicable to them. We therefore
restrict trajector pruning to trajectors of size bigger than a given threshold φ .

Experiments showed that trajector pruning effectively eliminates undesired feature tuples.
The following images show tracked features without and with trajector pruning, resp.
The correlation threshold θ was set to 0.5, the size threshold φ to 20 and the minimum
amount of correlated neighbors was 40% of all surrounding features.

Orbit around the earth
Feature translation is little while the feature detection is not consistent. Mismatched features
in Figure 8-14 were correctly removed with trajector pruning in Figure 8-15.

Feature tracking 8-69

Figure 8-14: Feature inconsistency leads to
mismatches.

Figure 8-15: The same picture after trajector
pruning.

Futurama crew
Figure 8-17 shows what happens when φ is too big. Although all mismatched trajectors of
size > φ have been correctly removed, the small mismatches remain. These trajectors are a
direct consequence of the flickering discussed in [chapter 8.4.1].

Figure 8-16: Single features were
completely mismatched.

Figure 8-17: Features with size < φ flicker
even after trajector pruning.

8.4.3 Feature tracking with history

Up to now we considered features from two adjacent frames only. A different approach is
to take into account all features detected so far, or at least over a longer period of time

[36]. Instead of matching Ft +1 to Ft only, we would then match it to

Fi
i = 0

t

U .

This has one major advantage: features, which disappear temporarily, can be re-matched
and this increases the stability of the matching process.
The downside is that such hidden features do not necessarily remain static. Some will
definitely move while not visible, which leads to a positional uncertainty of the feature. This
uncertainty is proportional to the time a feature could not be observed. And, of course, we
need to track much more features.

Feature tracking 8-70

We try to get the best of both worlds and to avoid the negative effects by applying a
three-stage tracking process.

1) match Ft +1 to Ft

2) estimate the position of the all features prior to Ft

3) match all unmatched features to

Fi
i = 0

t

U

Steps 1 and 3 are performed with the same feature tracker. Step 2 is explained in [chapter
9.3].

Feature tracking 8-71

8.5 Examples

8.5.1 Flying aircraft (simple cross correlation)

The following 15 frames show a tracked aircraft. Only 1 to 3 features were detected per
frame. Still the tracking performed well. Note that some frames have feature mismatches
as discussed in [chapter 8.3.1].

Feature tracking 8-72

8.5.2 Flying aircraft (optimizing cross correlation)

The following 15 frames show the same sequence as [chapter 8.5.1], but this time tracked
with the optimizing cross correlation instead. Note that all feature mismatches were
correctly suppressed.

Feature tracking 8-73

8.5.3 Airwolf (simple cross correlation)

Tracking more features is generally more stable. The following sequence shows an
appearing helicopter and an increasing number of features.

9 Feature graph

One possibility to represent structure are graphs [31][23].

Feature graphs are a flexible way to do so because they store the features (nodes) as well
as the relations between them (edges).
The following graph was designed to store features, which vary over time in their position
and appearance so the global structure can be retained.
Furthermore, the graph can be used to segment objects because the behaviors of
individual features can be related over time.

Feature graph 9-75

9.1 Nodes

Nodes are used to store the features. Every node represents one feature. A node has
therefore a position in feature space as well as an associated feature descriptor [chapter
7].

As stated in [chapter 8.4.3], features are not redetected in every frame. Therefore a node
may also represent ‘invisible’ features or even features outside of the image. As the
original features are expected to be in motion even when not visible, the confidence about
the position of the feature should decrease when the feature could not be redetected. This
is achieved by decreasing the confidence ξ of the feature as a whole [chapter 9.1.2].

9.1.1 Connecting the nodes

An important property of a graph is the connectivity of its nodes. We could connect every
node to every other in the graph, but this would lead to a waste amount of edges.
Another approach is to connect only nodes within a predefined window. This has the
drawback, that if we have a dense distribution of the nodes, we will again have many
edges, while a sparse distribution will result in no connectivity at all.
The chosen connection model is similar to the k-nearest clustering algorithm, because we
connect the k nearest neighbors of a node. This results in a constant connectivity
independent of the feature distribution.

9.1.2 Node pruning

In every time-step one of the following may happen
1) the feature could be redetected -> the confidence should rise
2) the feature was not re-detected -> the confidence should sink

This is achieved with two factors, the feature aging ξ† and anti-aging ξ* factors.

Nodes with a confidence lower than a given threshold are removed from the graph.

Feature graph 9-76

9.2 Edges

Edges connect two nodes. This graph does use undirected edges only

Fi → Fj ⇔ Fj → Fi (9.1)

and self-loops are prohibited

Fi → Fj ⇒ i ≠ j

 i = j ⇒ Fi → Fj

(9.2)

An edge represents the correlation strength of the connected features. A strong correlation
indicates both features belong to the same object. This correlation is a combination of the
spatial correlation and the temporal correlation and therefore called spatio-temporal
correlation pst .

9.2.1 Spatial correlation

If the distance between two features remains constant over time, this is an indication that
the features belong to the same object. This is especially true, when the features are in
motion. We could use the trajector correlation [chapter 8.4.2] as the spatial correlation,
but this has three major drawbacks.

1) If two features separate slowly from each other, their trajector correlation will be
high because we inspect two adjacent frames only. If the features separate over a
longer period of time, their spatial correlation should decrease.

2) On the other hand, if two features move away from each other in one frame and
approximate each other in the next, the trajector correlation is in both cases weak.
But in fact the features have now the same relative positions as they had at the
beginning. This behavior might be caused by flickering [chapter 8.4.1].

3) Hidden features do not have trajectors.

Because of these reasons we introduced the edge elasticity ε .
The trajector correlation also has some positive effects. If two features have similar
trajectors, their correlation should definitely rise. Note, that it should not decrease when
this is not the case (2).

Feature graph 9-77

9.2.1.1 Edge elasticity ε

Let’s think of an edge as a rubber band. As long as the rubber band is not stretched more
than a given amount, it will return to its prior state without consequences. If it is
overstretched it will eventually break [31].
Because of various factors described in prior chapters, features cannot be expected to
have a consistent distance to each other. The edge elasticity ε {0,1} is tolerant towards
these inconsistencies because it allows the features to move freely up to a given threshold
Ξ .
If this threshold is exceeded the edge elasticity is set to 0 (the rubber band breaks).

9.2.2 Temporal correlation

If two features are often detected at the same time, or consequently over a long period of
time, they are somehow related. This is achieved by applying an anti-aging factor ξ*

[chapter 9.1.2]
In contrast to the nodes, we do not age the edges. The reason is, that when a feature
disappears e.g. because of rotation in space, it is not less connected to the features it was
connected before. When a feature is not visible, we cannot conclude that it is less
correlated to the visible ones.
Edge aging is done indirectly by the feature pruning process.

9.2.3 Initial correlation

When features are detected for the first time, they need to be correlated. One way is to
apply a static initial correlation. A better approach would be to use a dynamic correlation.
From the first frame on, we have some hints on how correlated the features are

1) trajectors
2) feature descriptors
3) position

Currently we use all these indicators to calculate the initial correlation. The first two are
described in [chapter 8.4.2] and [chapter 7], resp. The positional correlation is explained
in [chapter 9.2.3.1].

These three parameters form a linear combination to describe the initial correlation

pI = d + α apT + bpFD + cp∆

a + b + c
− d

 (9.3)

Feature graph 9-78

Equation (9.3) can be simplified to

pI = d + α apT + bpFD + cp∆ − d() (9.4)

when we normalize the parameters to

a + b + c = 1 (9.5)

α is a weighted learning factor [0,1], which determines how close pI is to the static
correlation d . When set to 1, the static correlation has no impact and when set to 0, the
dynamic correlation disappears.

The values of the parameters a,b,c,d,α depend on the application and the content of the
images. Currently we use the empirically determined values given in Table 1.

Parameter Value
a 0.6
b 0.2
c 0.2
d 0.3
α 0.7

Table 1: correlation parameters

These parameters prefer the trajector correlation.

9.2.3.1 Positional correlation

The statement, that features are higher correlated if they are closer is not always correct,
but holds in many cases. This is the reason why we introduced the positional correlation
p∆ . But what distance is ‘close’? In some frames two features are far apart with a distance
of a few pixels, in others they are considered to be close with a distance of 100 pixels or
more. To address this relativity, we do not correlate the features based on a fixed distance
but in relation to the remaining surrounding features.
The correlation is defined as

p∆ = 1 −
∆ − ∆min

η∆max

(9.6)

where ∆ is the distance between the features, ∆min is the distance to the closest feature,
∆max the distance to the remotest feature and η is an adjusting factor to assure a slower
decrease of the correlation.

9.2.4 Adapting the correlation

At every frame the correlation of an edge might change. As stated before, only edges
between two tracked features might be adapted, because we don’t know about the other
features.

Feature graph 9-79

Edges are adapted by calculating the initial correlation for the matched tuples and apply
this in a weighted learning algorithm to the old edge correlation. The new correlation is
then

p 't +1 = (pt + α(pI − pt)) (9.7)

In addition the correlation is multiplied by the anti-aging factor to reward temporal
correlated features.

pt +1 = min ξ* p 't +1,1() (9.8)

Figure 9-1 shows how the adaptation of the correlation works. Red lines indicate weak
correlation, while green stands for a high correlation. At time t=0 all edges have about the
same correlation. Now the red ball moves from left to right, while the square remains
static. This leads to a higher correlation within the objects and a decreasing correlation
between them. In frame 7 the correlation has segmented the objects and the edges with a
low correlation can be removed.

t = 0 t = 0 t = 7 t = 7

Figure 9-1: Adapting the correlation over time

Feature graph 9-80

9.3 Graph transformation

As mentioned in [chapter 8.4.3] the ‘hidden’ features do not remain static. They move in
‘some’ way. This motion can be estimated in two ways

1) build a model from the period the feature could be observed
2) transform the feature according to its surrounding features

9.3.1 Linear dynamic models

Linear dynamic models estimate the position of a point according to a motion model [4].
Common models are constant velocity or constant acceleration. The model is chosen and
the parameters are calculated from the observed motion. This estimation holds as long as
the feature does not change the model. For such moving objects, this approach provides
reliable tracking capabilities even when the object is completely occluded.
Linear dynamic models are usually not built from single features because they behave to
inconsistent. Instead motion fields are observed over some time period τ to estimate the
motion model [36].
We do not use linear dynamic models in our work so far. Instead we applied the swarm
model discussed in [chapter 9.3.2].

9.3.2 Swarm model

The swarm model assumes that the points move within a swarm. The motion of the hidden
features can therefore be derived from the motion of the visible features in the swarm. The
problem in first place is to determine the membership of a feature.
This is done by evaluating the edge correlation described in [chapter 9.2]. The feature is
then transformed according to a trajector, which is calculated by averaging the weighted
trajectors of the neighboring features.

T
ur

=
piTi

ur

i = 0

N

∑

pi
i = 0

N

∑
(9.9)

How the transformation works can be seen in Figure 9-2. While the plane moves out of the
screen its shape is retained by the graph even beyond the border of the frame.

Feature graph 9-81

Figure 9-2: F/A-18 moving out of the screen. The feature graph retains the structure even
beyond the border.

9.4 Examples

The plots of the graph contain lines (edges) and/or circles (nodes). Red lines state that the
features are less correlated, while the green ones indicate a high correlation.
The color of the nodes indicates their confidence. Again, red color stands for low and
green for high confidence.

9.4.1.1 Space shuttle

The space shuttle is segmented against an easy background.

Figure 9-3: Space shuttle

Feature graph 9-82

9.4.1.2 Flying aircraft

Note the edges at the tip of the plane show less correlation because the tip of the plane
has a different color.

Figure 9-4: Flying aircraft

9.4.1.3 Human

The clip shows a human moving in front of a fixed camera. The first graph plot shows the
features retained in the graph and their confidence, while the second plot shows the
feature correlations.

Figure 9-5: Human (Original, Features, Edges)

Feature graph 9-83

9.4.1.4 Ping-Pong ball

The following clip shows a Ping-Pong ball rotating around its z-axis. The first graph shows
the lower correlation of the edges at the border of the ball, because the features either just
appeared (left side) or disappeared (right side).
The second plot shows the graph at the same state but only the edges with maximum
correlation are displayed.

Figure 9-6: Ping-Pong ball

Conclusion

10 A glimpse back…

Unsupervised object tracking In this work we examined two different approaches to
unsupervised object tracking. Both do not use any prior
knowledge about the objects at all.

Gradient-based approach

Facette pyramid

The gradient-based approach described in [chapter 5]
tries to estimate the optic flow by finding the
corresponding pixels in two adjacent frames. It is
considered a gradient-based approach, because the
correspondence is found by comparing the color
intensities of the pixels. The method we introduced uses so
called Facette pyramids. These are multi-scale pyramids to
track motions of different intensities. The approach is
simple, stable and fast enough for real-time estimation.
Because the amount of data to be evaluated does not
depend on the content of the frames, the runtime of the
algorithm is constant.

Feature-based approach

Feature detector

The feature-based approach evaluates the frames to find
so-called features. These are regions in the image, which
are somehow special. How special a region is, is
determined by the feature detectors.
We implemented and compared three different feature
detectors [chapter 6] and found the Harris corners feature
detector to most suitable for our project.

Feature descriptor

Feature tracker

The detected regions are encoded by feature descriptors
[chapter 7] in a way they can be compared later on.
The task to find corresponding features in two adjacent
frames is called tracking. We introduced three different
feature trackers [chapter 8], of which the optimizing cross
correlation proved to be the best. We enhanced the
trackers with some fast and efficient post-processing
algorithms to receive a better result.

A glimpse back… 11-86

Feature graph Finally, the detected structure is stored in a feature graph
[chapter 9], which is tolerant to temporal inconsistencies
in the feature detection. Furthermore it is able to transform
unobserved features, which enables it to retain the
structure of objects even beyond the border of the screen.

Object segmentation Another benefit of a retained structure is the object
segmentation. The graph is able to segment objects
unsupervised, when the content of the image is only
slightly cluttered.

Chain code
Besides these two approaches we also introduced a
method to encode the shape of objects [chapter 4]. The
method basically interprets the shape as the output of a
function and finds exposed points in the first derivation.
The calculation is fast and the representation is stable
towards partial occlusion and noise. Furthermore the
method could easily be enhanced to be completely scale
and rotation invariant.

Region growing

Edge tracer

To generate the shapes for the chain code transformation,
we proposed a fast region segmentation algorithm
[chapter 2]. It was designed for simple color gradients (no
texture) as found in cartoons. The segmented areas are
traced by a simple and fast edge tracer as described in
[chapter 3].

Image filtering Finally we implemented and tested some image pre-
processing filters [chapter 1] and found that a
combination of median and Gaussian convolution
produces reliable noise reduction.

11 … while staring ahead

This chapter alone would fill books.
Artificial vision is still at its beginning. It is an enormous
area and applications for a reliable system are easy to
find. They range from image and video retrieval over
augmented reality to autonomous vehicles and robots.

Even considering only our work presented in this paper,
there is a lot left to do.

Gradient-based approach

Object segmentation

The gradient-based approach should be investigated more
in depth for its usability in a real-time environment.
An interesting approach would be to generate motion
clusters like ASSET-2 [36] does and to track these over
time.
These could also be used for object segmentation or for
video post processing.

Neuronal network An implementation of Facette as a neuronal network
would provide higher flexibility and interesting
possibilities as described in [chapter 5].

Feature-based approach The feature-based approach could be expanded by
higher-level information, such as linear dynamic models or
structure models, to cluster the features to objects.

Unsupervised learning

A better approach would be to generate these models
from the observations and to create an artificial
representation of the world. Such a mental model would
be a great step towards unsupervised learning and
artificial intelligence.

Occlusion Occlusion is a problem not addressed so far by First Light.
This is definitely a must for a reliable object tracking
system and should be addressed in later releases.

… while staring ahead 11-88

Combination of the
approaches

The combination of both approaches could improve the
tracking a big deal. A good tracking system should use all
information available. Features should be extracted and
encoded based on color, texture and shape.

The visual system of humans does so. In the center of our
view-field, we are able to detect and recognize various
features and objects in different ways. In the periphery,
we perceive low-level optic flow, for example when
driving in a car.

3-D reconstruction of 2-D
images

The reconstruction of a three-dimensional model from two-
dimensional input images is another topic of intense
research. The trajectors of the perceived features could be
used to do so. Given seven trajectors we could estimate
an affine matrix and deduce the third dimension of the
points.

Chain code The chain code introduced in [chapter 4] is also worth
further evaluation. It could be enhanced to be rotation
and scale invariant using elastic graphs and multi-scale
pyramids, resp.

Seeing means believing As stated at the beginning of this chapter, we could
continue with this enumeration for some more pages.
There are many unsolved problems at every level, from
early vision up to the storage and interpretation of the
environment. We believe that the ability to see is
inherently important for higher intelligence and that
mankind would not be what it is without it. Seeing means
believing.

Ask yourselves, which sense would you miss most?

Realization

12 Architecture

The following chapters describe the main concepts of the developed applications. We do
not describe the classes in detail nor do we describe all the classes. First Light and Facette
were designed to be a proof of concept. They are a patchwork of over 100 classes with a
total of over 17’000 lines of code.
While it would be a waste of time to explain every piece, the basic concepts remain valid
for later implementations of the approaches described in this paper.

Architecture 12-91

12.1 Libraries

First Light and Facette use the following libraries.

- ffmpeg
- Gandalf
- QT

All libraries are open source and available for MacOS X, Linux and Windows under the
GPL (GNU public license).
These libraries have some more dependencies, which are not listed here. Please refer to
their documentation for more information.

12.1.1 ffmpeg

ffmpeg is one of the fastest video encoding/decoding libraries available.
Both applications use the library to process the video data.

version url
0.4.9-pre1 http://ffmpeg.sourceforge.net

12.1.2 Gandalf

Gandalf is a great library, which provides image processing routines as well as vision
related algorithms. It is very fast because it is completely written in C and it is extensively
documented.
First Light uses the Harris corner detection algorithm.

version url
1.3.2 http://gandalf-library.sourceforge.net

12.1.3 Qt

Qt is in our opinion the best GUI library for C++. It is simple enough to be learned in one
day and powerful enough to create any GUI. Its documentation is very detailed and
supported by many helpful examples.
Both applications use Qt for anything related to the GUI.

version url
3.3.3 http://trolltech.com

Architecture 12-92

12.2 Technical equipment

12.2.1 Hardware

Processor type Intel Pentium 4
Clock speed 2.60 GHz
Memory 0.99 GB

12.2.2 Operating system

Linux Knoppix
Kernel version 2.4.26

13 First Light

The application First Light implements the feature-based approach described in [chapters
6,7,8,9]. In addition the algorithms in [chapters 1,2,3,4] are implemented to support the
approach.

Realization: First Light 13-94

13.1 Overview

The application consists of 4 stages

- Video Stage
- Feature Detection
- Feature Tracking
- Feature Graph

Especially the two center stages (Feature Detection and Feature Tracking) were designed
to be modular, so we could test different feature detectors / trackers.

Figure 13-1: First Light consists of 4 stages

13.2 Video Stage

The video stage provides access to movie files of different formats. On one hand it is a
wrapper class for the ffmpeg library [chapter 12.1.1] and on the other hand it provides
additional image processing techniques [chapter 1].

Figure 13-2: The Video Stage

Thanks to ffmpeg the application can process a variety of available video formats.

Realization: First Light 13-95

13.3 Feature Detection

The feature detection stage is completely modular and the modules can be exchanged at
runtime.

13.3.1 Feature detectors

Figure 13-3: The feature detectors

The functionality of the feature detectors is described in [chapter 6].

13.3.1.1 Chain code feature detector

The chain code feature detector uses the concepts described in [chapters 2,3,4].

Figure 13-4: Chain code feature detector

13.3.1.2 Harris corners feature detector

The Harris corners feature detector [chapter 6.2] is a wrapper class for the Gandalf library
[chapter 12.1.2].

Realization: First Light 13-96

Figure 13-5: Harris corners feature detector

13.3.1.3 PCA SIFT feature detector

The PCA SIFT feature detector is a slightly modified version [chapter 6.2] of Yan Ke’s and
Rahul Sukthankars’ original source code. They gave us the code for research purposes.

Figure 13-6: PCA SIFT feature descriptor

13.3.2 Feature descriptors

Theoretically, the system contains two feature descriptors [chapter 7]. But because the PCA
SIFT descriptor needs a scale-invariant feature detector, it is not used in practice.

Figure 13-7: The feature descriptors

Realization: First Light 13-97

13.4 Feature Tracking

Like the Feature Detection stage [chapter 13.3], the Feature Tracking stage is completely
modular. The different tracking modules can be exchanged at runtime. The features are
tracked using trackable feature graphs [chapter 13.4.2].

13.4.1 Feature trackers

The functionality of the feature trackers is described in [chapter 8]. Note that the enhanced
feature tracker is deprecated and not included in the system anymore. It is only mentioned
to conform with [chapter 8].

Figure 13-8: Feature trackers

13.4.2 Trackable feature graph

Features are not tracked directly because the trackers need additional information the
feature does not need to have. I.e. trajector and matched feature.
Therefore every feature is wrapped by a trackable feature, which provides these
capabilities. These trackable features are organized in a trackable feature graph analog
to the feature graph described in [chapter 13.5].

Figure 13-9: Trackable feature graph

Trackable features are linked using the same linking algorithms as the feature graph does
[chapter 13.5].

Realization: First Light 13-98

Figure 13-10: Trackable feature

13.5 Feature Graph

The feature graph consists mainly out of features (nodes) and their correlations (edges).

Figure 13-11: Feature graph

14 Facette

Facette is the implementation of the gradient-based optic flow estimation introduced in
[chapter 5.1].
It uses the image filtering techniques described in [chapter 1] to pre-process the frames.

Realization: Facette 14-100

14.1 Overview

 The application consists of three stages

- Video Stage
- Facette Stage
- Post-processing Stage

In contrast to First Light [chapter 13], only the last stage is modular. The first stage is
exactly the same as for First Light and explained in [chapter 13.2].

Figure 14-1: Facette consists of 3 stages.

14.2 Facette Stage

The Facette Stage corresponds to a combination of the Feature Detection and Feature
Tracking stages in First Light.
The stage is responsible to build the pyramids [chapter 5.1.2] and estimate the optic flow
[chapter 5.1.5].

14.2.1 Facette pyramid

The Facette pyramid is realized as a template, because it has different applications. The
RGB Facette tracker for example uses three integer pyramids, while the saliency pyramid
is a Boolean pyramid.

Figure 14-2: Facette pyramid

The iterator class is a convenient and powerful method to navigate inside the pyramid as
well as inside a single layer.

Realization: Facette 14-101

14.2.2 Facette tracker

We implemented two different Facette trackers; one tracks in all three RGB channels, the
other in the grayscale channel only.

Figure 14-3: Facette tracker

14.3 Post-processing Stage

The Post-processing Stage provides some algorithms to interpret the optic flow. The most
important are:

- Motion field [5.10.1.2]
- Source-sink field [5.10.1.3]

Figure 14-4: Post-processing Stage

…

15 Credits

I want to thank

- Prof. Dr. J. Joller, for letting me choose such an interesting topic for my diploma
thesis.

- Yan Ke and Rahul Sukthankar, for the source code of the PCA SIFT algorithm.
It saved me a lot of time.

- Sebastian de Castelberg and Markus Kinzler, for their Linux support.

- My parents, for granting me the possibility to study.

- All my friends here at school, for stealing my precious time with pool-billard, which
I loose always anyway.

- And all my other friends, for tolerating the lack of time I spent with them during
these eight weeks.

- Matt Groening, for inventing The Simpsons.

- Beer, for being beer.

16 Table of figures

Figure 1-1: original image .. 3
Figure 1-2: smoothed image (σ = 21) ... 3
Figure 1-3: original image .. 4
Figure 1-4: Median filtered image N = 21() .. 4
Figure 3-1: The first six steps of the tracing process... 14
Figure 3-2: The last three steps of the tracing process ... 14
Figure 3-3: Tracing diagonal (start 90° left) .. 15
Figure 3-4: Tracing straight (start 45° left)... 15

Figure 4-1: φ=∞, over detection of corners where slopes are close to ±
π
2

. 20

Figure 4-2: φ=2, ‘Optically pleasing’ corner detection ... 20
Figure 4-3: φ=2, upper left corner not detected .. 21
Figure 4-4: φ=∞, all 3 corners detected.. 21
Figure 4-5: µ=0, over detection because of small direction changes................................. 21
Figure 4-6: µ=7, momentum driven suppression results in a correct detection.................... 21
Figure 4-7: Key points detected in a circle ... 22
Figure 4-8: βS=3, βCC=3, φ=2, µ=2, τ=20 ... 23
Figure 4-9: βS=3, βCC=3, φ=3, µ=1, τ=40 ... 24
Figure 4-10: φ=5, µ=5, τ=40... 24
Figure 4-11: φ=5, µ=5, τ=4 .. 24
Figure 4-12: φ=5, µ=0, τ=4 .. 24
Figure 4-13: φ=∞, µ=0, τ=1 .. 24
Figure 5-1: Mosaic vision ... 27
Figure 5-2: Cells are arranged hierarchically ... 28
Figure 5-3: Pyramid structure (schematic)... 30
Figure 5-4: Example of a pyramid with 30 layers (every fifth layer is displayed)............... 30
Figure 5-5: Penetration of a cell in its upper 3 layers .. 31
Figure 5-6: Optic flow estimation within the pyramid layers... 33
Figure 5-7: optic flow... 38
Figure 5-8: motion field .. 38
Figure 5-9: Source-sink field.. 39
Figure 5-10: Optic flow. Note the stronger motion intensity at the bottom because the

house is rotated around a pole near to the roof. ... 40
Figure 5-11: Motion field. The stronger motion seen in Figure 5-10 finds its representation

in the bright green fields, which as well indicate high intensity. 41
Figure 5-12:Source-sink field. Again the stronger motion at the bottom leaves its tracks..... 41
Figure 6-1: Image sizes from 192x144 up to 512x480 (avg. over 50 frames each).......... 46

Table of figures 16-105

Figure 6-2: The segmentation process uses almost 90% of the time used in the detection
process .. 47

Figure 6-3: Performance benchmark.. 50
Figure 6-4: Harris Corners and Chain Code... 50
Figure 6-5: The amount of features detected varies depending on the contents of the image51
Figure 7-1: Correlated features from two different images. Image from [2]....................... 58
Figure 7-2: Extracted feature descriptors from Figure 7-1. N=3. Image from [2]. 59
Figure 8-1: Feature mismatch.. 62
Figure 8-2: Simple cross correlation .. 62
Figure 8-3: Enhanced cross correlation.. 62
Figure 8-4: simple cross correlation... 63
Figure 8-5: optimized cross correlation.. 63
Figure 8-6: Total tracking time .. 64
Figure 8-7: Tracking time per feature... 64
Figure 8-8: Detected features (198) .. 66
Figure 8-9: Remaining superfeatures (91) .. 66
Figure 8-10: Detected features (90) .. 66
Figure 8-11: Remaining superfeatures (41) .. 66
Figure 8-12: Correlation function .. 68
Figure 8-13: Seed trajector To

uru
.. 68

Figure 8-14: Feature inconsistency leads to mismatches. ... 69
Figure 8-15: The same picture after trajector pruning.. 69
Figure 8-16: Single features were completely mismatched... 69
Figure 8-17: Features with size < φ flicker even after trajector pruning. 69
Figure 9-1: Adapting the correlation over time... 79
Figure 9-2: F/A-18 moving out of the screen. The feature graph retains the structure even

beyond the border.. 81
Figure 9-3: Space shuttle .. 81
Figure 9-4: Flying aircraft ... 82
Figure 9-5: Human (Original, Features, Edges) .. 82
Figure 9-6: Ping-Pong ball .. 83
Figure 13-1: First Light consists of 4 stages... 94
Figure 13-2: The Video Stage ... 94
Figure 13-3: The feature detectors... 95
Figure 13-4: Chain code feature detector .. 95
Figure 13-5: Harris corners feature detector .. 96
Figure 13-6: PCA SIFT feature descriptor ... 96
Figure 13-7: The feature descriptors .. 96
Figure 13-8: Feature trackers.. 97
Figure 13-9: Trackable feature graph.. 97
Figure 13-10: Trackable feature.. 98
Figure 13-11: Feature graph .. 98
Figure 14-1: Facette consists of 3 stages.. 100
Figure 14-2: Facette pyramid.. 100
Figure 14-3: Facette tracker.. 101
Figure 14-4: Post-processing Stage.. 101

17 Bibliography

[1] Russel S., Norvig P., “Artificial Intelligence – a modern approach”, pp. 453,
Second Edition, Pearson Education, Inc., 2003

[2] Pollefeys M., “Tutorial on 3D Modeling from images”,
http://www.esat.kuleuven.ac.be/~pollefey/tutorial/node53.html, 2000

[3] Chandran S., Madheshiya K. K., „A Fast Segmentation Algorithm Revisited“,
Computer Science and Engg. Dept., 2002

[4] Forsyth D. A. and Ponce J., “Computer Vision – a modern approach”, Pearson
Education, Inc., 2003

[5] Harris C. and Stephens M., “A combined corner and edge detector”, Fourth Alvey
Vision Conference, pp.147-151, 1988

[6] Pollefeys M., “Tutorial on 3D Modeling from images”,
http://www.esat.kuleuven.ac.be/~pollefey/tutorial/node51.html, 2000

[7] Lowe D. G., “Object Recognition from Local Scale-Invariant Features”, Proc. of the
International Conference on Computer Vision, 1999

[8] Lowe D. G., “Towards a Computational Model for Object Recognition in IT
Cortex”, First IEEE International Workshop on Biologically Motivated Computer
Vision, 2000

[9] Lowe D. G., “Distinctive Image Features from Scale-Invariant Keypoints”,
International Journal of Computer Vision, 2004

[10] Ke Y. and Sukthankar R., “PCA-SIFT: A More Distinctive Representation for Local
Image Descriptors”, Computer Vision and Pattern Recognition, 2004

[11] Canny J., “A Computational Approach to Edge Detection”, 1983

[12] Asano, T., Chen, D.Z., Katoh, N., Tokuyama T., “Polynomial-time solutions to
image segmentation”, pp. 104-113., Proc. of the 7th Ann. SIAM-ACM Conference
on Discrete Algorithms (Jan. 1996)

Bibliography 17-107

[13] Martin D., Fowlkes C., “The Berkeley Segmentation Dataset and Benchmark“,
http://www.cs.berkeley.edu/projects/vision/grouping/segbench/, 2003

[14] J. Shi and J. Malik, "Normalized Cuts and Image Segmentation", IEEE Transactions
on Pattern Analysis and Machine Intelligence (PAMI), 2000.

[15] S. Wesolkowski, P. Fieguth, „A probabilistic framework for image segmentation“,
IEEE ICIP, 2003

[16] Author unknown, „The Hough transform“, Massey University, Albany, http://cs-alb-
pc3.massey.ac.nz/notes/59318/l11.html

[17] Barrows G., „What is ‚Optic Flow’“,
http://www.centeye.com/pages/techres/opticflow.html

[18] Smith S. M., „Finding Optic Flow“, Oxford Centre for Functional Magnetic
Resonance Imaging of the Brain,
http://www.fmrib.ox.ac.uk/~steve/review/review/node1.html, 1997

[19] B.K.P. Horn and B.G. Schunk, „Determining optical flow“, Artificial Intelligence,
17:185--203, 1981

[20] Forina M. et al., „Minimum spanning tree: ordering edges to identify clustering
structure“, Facoltà di Farmacia, Università di Genova, 2004

[21] Park C. H., Park H, „Nonlinear feature extraction based on centroids and kernel
functions“, University of Minnesota, 2003

[22] Paragios N., Tziritas G., „Adaptive detection and localization of moving objects in
image sequences“, University of Crete, 1996

[23] Sanfeliu, A. et al., „Graph-based representations and techniques for image
processing and analysis“, Universitat Politècnica de Catalunya, Barcelona, 2000

[24] Palm C., „Color texture classification by integrative Co-occurence matrices“,
Institute for Medical Informatics, Aachen University of Technology, 2003

[25] Mueller M. et al, „Edge- and region-based segmentation technique for the
extraction of large, man-made objects in high-resolution satellite imagery“,
GeoForschungsZentrum Potsdam, 2004

[26] Dougherty E. R., Brun M., „A probabilistic theory of clustering“, Department of
Electrical Engeneering, Texas, 2003

[27] Ferraro M. et al., „Entropy-based representation of image information“,
Dipartimento di Fisica Sperimentale, Università di Torino, 2002

Bibliography 17-108

[28] Ruberto C. D., „Recognition of shapes by attributed skeletal graphs“, Dipartimento
di Matematica e Informatica, Università di Cogliari, 2003

[29] Toivanen, P. J. et al., „Edge detection in multispectral images using the self-
organizing map“, Laboratory of Information Processing, Lappeenranta University
of Technology, 2003

[30] Shu H. Z. et al., „Moment-based methods for polygonal approximation of
digitized curves“, Departement of Biology and Medical Engeneering, China, 2000

[31] Triesch J., von der Malsburg C., „Classification of hand postures against complex
backgrounds using elastic graph matching“, Departement of Cognitive Science, UC
San Diego, 2002

[32] Banarse D. S. et al., „Analysis and application of a self-organising image
recognition neural network“, University of Wales, 1999

[33] Zhang D., Lu G., „Review of shape representation and description techniques“,
Gippsland School of Computing and Info. Tech., Monash University, Australia,
2002

[34] Foucherot I. et al., „New methods for analysing colour texture based on the
Karhunen-Loeve transform and quantification“, Laboratoire d’Electronique Image,
Université de Bourgogne, 2004

[35] Smith S.M., and Brady J.M., „A scene segmenter; visual tracking of moving
vehicles“, Engineering Applications of Artificial Intelligence, 7(2):191--204, 1994

[36] Smith S. et al., „ASSET 2: Real-Time Motion Segmentation and Object Tracking “,
http://www.fmrib.ox.ac.uk/~steve/asset/, Fifth International Conference on
Computer Vision, 1995

Bibliography 17-109

17.1 Data Archives

[37] Dryden Research Aircraft Movie Collection,
http://www.dfrc.nasa.gov/Gallery/Movie/index.html

[38] Berkeley Online Media Resources,
http://www.lib.berkeley.edu/MRC/onlinemediamenu.html

[39] Internet Archive: Moving Image Archive,
http://www.archive.org/movies/movies.php

[40] CNN Video Vault, http://www.cnn.com/video_vault/index.html

[41] Newsfilm Library at The University of South California,
http://www.sc.edu/newsfilm/

[42] The Trailer Park, http://www.movie-trailers.com

[43] Google, http://www.google.com

18 Index

B
bandpass threshold, 20
blind pixel, 4
boid, 66
Boolean representation, 13

C
Canny

edge detector, 46
cell, 27

sub cell, 29
super cell, 29

cell pyramid, 28
chain code, 19
clustering

k-nearest, 75
color

channels, 6
gradient, 6

convolution
1-D, 3
2-D, 3
image smoothening, 3

correlation
adapting, 78
initial seed, 63
parameters, 78
positional, 78
spatial, 76
spatio-temporal, 76
strength, 76
temporal, 77

cross correlation
enhanced, 62
optimizing, 63
simple, 61

D
difference of Gauss. See DoG octave
DoG octave, 49

E
edge, 76

aging factor. See edge: anti-aging factor
anti-aging factor, 77
elasticity, 77

edge tracing, 12
eigenvalue, 48

F
Facette, 27

realization, 99
Facette layer, 28
Facette pyramid, 100. See cell pyramid
Facette stage, 100
feature, 45

sub-feature, 65
superfeature, 65
trackable, 97

feature descriptor, 56
intensity patch, 58
PCA SIFT, 57
SIFT, 57

feature detector, 45
chain code, 46
Harris corners, 48
PCA SIFT, 49

feature graph, 98
trackable, 97

feature space, 75
feature tracker

enhanced cross correlation. See cross
correlation: enhanced

optimizing cross correlation. See cross
correlation: optimizing

simple cross correlation. See cross correlation:
simple

feature tracking, 60
ffmpeg, 91
First Light

realization, 93
flickering, 65

G
Gandalf, 91
Gaussian noise

additive stationary, 2

Index 18-111

H
Harris corners. See feature detector: Harris

corners
Hill-Climbing, 63
Hough transform, 65

I
Intensity patch. See feature descriptor: intensity

patch

K
Ke, Yan. See Yan Ke
kernel

Gauss, symmetric, 3
size, 4
strength, 4

keypoint, 57

L
linear dynamic model, 80

constant acceleration, 80
constant velocity, 80

Lowe, David G., 49

M
measurement

correlation, 61
distance, 61

median, 4
MLP. See multilayer perceptron
momentum, 21
mosaic vision, 27
motion field, 38
multilayer perceptron, 36

N
neuron

spiking, 36
neuronal network. See multilayer perceptron
node, 75

aging factor, 75
anti-aging factor. node: aging factor
confidence. See node: pruning
connectivity, 75

pruning, 75
NP hard, 63

O
object segmentation, 79
optic flow

computer vision, 26
correlation-based, 26
feature-based, 26
general, 26
gradient-based, 26

P
PCA SIFT, 49, 57
penetration, 31

Q
Qt, 91

R
Rahul Sukthankar, 57

S
segmentation

graph representation, 5
motion based, 5
pixel clustering, 5
probabilistic model, 5

SIFT, 49, 57
source-sink field, 39
Sukthankar, Rahul. See Rahul Sukthankar
swarm model, 80
swarm theory, 66

T
trajector, 66

pruning, 66

V
Video Stage, 94

Y
Yan Ke, 57

